Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x^2-2x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x2−2x)=0

Solution

x=1+2πn+1​,x=1−2πn+1​,x=1+π(2n+1)+1​,x=1−π(2n+1)+1​
+1
Degrees
x=57.29577…∘+154.62628…∘n,x=57.29577…∘−154.62628…∘n,x=57.29577…∘+184.99331…∘n,x=57.29577…∘−184.99331…∘n
Solution steps
sin(x2−2x)=0
General solutions for sin(x2−2x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x2−2x=0+2πn,x2−2x=π+2πn
x2−2x=0+2πn,x2−2x=π+2πn
Solve x2−2x=0+2πn:x=1+2πn+1​,x=1−2πn+1​
x2−2x=0+2πn
Expand 0+2πn:2πn
0+2πn
0+2πn=2πn=2πn
x2−2x=2πn
Move 2πnto the left side
x2−2x=2πn
Subtract 2πn from both sidesx2−2x−2πn=2πn−2πn
Simplifyx2−2x−2πn=0
x2−2x−2πn=0
Solve with the quadratic formula
x2−2x−2πn=0
Quadratic Equation Formula:
For a=1,b=−2,c=−2πnx1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−2πn)​​
x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−2πn)​​
Simplify (−2)2−4⋅1⋅(−2πn)​:21+2πn​
(−2)2−4⋅1⋅(−2πn)​
Apply rule −(−a)=a=(−2)2+4⋅1⋅2πn​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅1⋅2πn​
Multiply the numbers: 4⋅1⋅2=8=22+8πn​
Factor 22+8πn:4(1+2πn)
22+8πn
Rewrite as=4⋅1+4⋅2πn
Factor out common term 4=4(1+2πn)
=4(1+2πn)​
Apply radical rule: assuming a≥0,b≥0=4​2πn+1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22πn+1​
x1,2​=2⋅1−(−2)±21+2πn​​
Separate the solutionsx1​=2⋅1−(−2)+21+2πn​​,x2​=2⋅1−(−2)−21+2πn​​
x=2⋅1−(−2)+21+2πn​​:1+2πn+1​
2⋅1−(−2)+21+2πn​​
Apply rule −(−a)=a=2⋅12+21+2πn​​
Multiply the numbers: 2⋅1=2=22+22πn+1​​
Factor 2+21+2πn​:2(1+1+2nπ​)
2+21+2πn​
Rewrite as=2⋅1+21+2nπ​
Factor out common term 2=2(1+1+2nπ​)
=22(1+1+2nπ​)​
Divide the numbers: 22​=1=1+2πn+1​
x=2⋅1−(−2)−21+2πn​​:1−2πn+1​
2⋅1−(−2)−21+2πn​​
Apply rule −(−a)=a=2⋅12−21+2πn​​
Multiply the numbers: 2⋅1=2=22−22πn+1​​
Factor 2−21+2πn​:2(1−1+2nπ​)
2−21+2πn​
Rewrite as=2⋅1−21+2nπ​
Factor out common term 2=2(1−1+2nπ​)
=22(1−1+2nπ​)​
Divide the numbers: 22​=1=1−2πn+1​
The solutions to the quadratic equation are:x=1+2πn+1​,x=1−2πn+1​
Solve x2−2x=π+2πn:x=1+π(2n+1)+1​,x=1−π(2n+1)+1​
x2−2x=π+2πn
Move 2πnto the left side
x2−2x=π+2πn
Subtract 2πn from both sidesx2−2x−2πn=π+2πn−2πn
Simplifyx2−2x−2πn=π
x2−2x−2πn=π
Move πto the left side
x2−2x−2πn=π
Subtract π from both sidesx2−2x−2πn−π=π−π
Simplifyx2−2x−2πn−π=0
x2−2x−2πn−π=0
Solve with the quadratic formula
x2−2x−2πn−π=0
Quadratic Equation Formula:
For a=1,b=−2,c=−2πn−πx1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−2πn−π)​​
x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−2πn−π)​​
Simplify (−2)2−4⋅1⋅(−2πn−π)​:21+π(1+2n)​
(−2)2−4⋅1⋅(−2πn−π)​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅(−2πn−π)​
Multiply the numbers: 4⋅1=4=22−4(−2πn−π)​
Factor 22−4(−2πn−π):4(1+π(1+2n))
22−4(−2πn−π)
Rewrite as=4⋅1−4(−π−2nπ)
Factor out common term 4=4(1−(−π−2nπ))
Factor −(−π−2πn)+1:1+π(1+2n)
1−(−π−2nπ)
Factor −π−2nπ:−π(1+2n)
−π−2nπ
Factor out common term π=−π(1+2n)
=1+π(2n+1)
=4(π(2n+1)+1)
=4(1+π(1+2n))​
Apply radical rule: assuming a≥0,b≥0=4​π(2n+1)+1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2π(2n+1)+1​
x1,2​=2⋅1−(−2)±21+π(1+2n)​​
Separate the solutionsx1​=2⋅1−(−2)+21+π(1+2n)​​,x2​=2⋅1−(−2)−21+π(1+2n)​​
x=2⋅1−(−2)+21+π(1+2n)​​:1+π(2n+1)+1​
2⋅1−(−2)+21+π(1+2n)​​
Apply rule −(−a)=a=2⋅12+21+π(1+2n)​​
Multiply the numbers: 2⋅1=2=22+2π(2n+1)+1​​
Factor 2+21+π(1+2n)​:2(1+1+(1+2n)π​)
2+21+π(1+2n)​
Rewrite as=2⋅1+21+(1+2n)π​
Factor out common term 2=2(1+1+(1+2n)π​)
=22(1+1+(1+2n)π​)​
Divide the numbers: 22​=1=1+π(2n+1)+1​
x=2⋅1−(−2)−21+π(1+2n)​​:1−π(2n+1)+1​
2⋅1−(−2)−21+π(1+2n)​​
Apply rule −(−a)=a=2⋅12−21+π(1+2n)​​
Multiply the numbers: 2⋅1=2=22−2π(2n+1)+1​​
Factor 2−21+π(1+2n)​:2(1−1+(1+2n)π​)
2−21+π(1+2n)​
Rewrite as=2⋅1−21+(1+2n)π​
Factor out common term 2=2(1−1+(1+2n)π​)
=22(1−1+(1+2n)π​)​
Divide the numbers: 22​=1=1−π(2n+1)+1​
The solutions to the quadratic equation are:x=1+π(2n+1)+1​,x=1−π(2n+1)+1​
x=1+2πn+1​,x=1−2πn+1​,x=1+π(2n+1)+1​,x=1−π(2n+1)+1​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin^2(x)+4cos^2(x)=710cos^2(x)+cos(x)=11sin^2(x)-9sin(6.5x+2.5)=0.08511-tan(x)=(-1)/3sin(x/3)=cos(x/2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024