Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x/3)=cos(x/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x​)=cos(2x​)

Solution

x=53π+12πn​,x=−3π−12πn
+1
Degrees
x=108∘+432∘n,x=−540∘−2160∘n
Solution steps
sin(3x​)=cos(2x​)
Rewrite using trig identities
sin(3x​)=cos(2x​)
Use the following identity: cos(x)=sin(2π​−x)sin(3x​)=sin(2π​−2x​)
sin(3x​)=sin(2π​−2x​)
Apply trig inverse properties
sin(3x​)=sin(2π​−2x​)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn3x​=2π​−2x​+2πn,3x​=π−(2π​−2x​)+2πn
3x​=2π​−2x​+2πn,3x​=π−(2π​−2x​)+2πn
3x​=2π​−2x​+2πn:x=53π+12πn​
3x​=2π​−2x​+2πn
Move 2x​to the left side
3x​=2π​−2x​+2πn
Add 2x​ to both sides3x​+2x​=2π​−2x​+2πn+2x​
Simplify
3x​+2x​=2π​−2x​+2πn+2x​
Simplify 3x​+2x​:65x​
3x​+2x​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3x​:multiply the denominator and numerator by 23x​=3⋅2x⋅2​=6x⋅2​
For 2x​:multiply the denominator and numerator by 32x​=2⋅3x⋅3​=6x⋅3​
=6x⋅2​+6x⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6x⋅2+x⋅3​
Add similar elements: 2x+3x=5x=65x​
Simplify 2π​−2x​+2πn+2x​:2π​+2πn
2π​−2x​+2πn+2x​
Add similar elements: −2x​+2x​=0
=2π​+2πn
65x​=2π​+2πn
65x​=2π​+2πn
65x​=2π​+2πn
Multiply both sides by 6
65x​=2π​+2πn
Multiply both sides by 666⋅5x​=6⋅2π​+6⋅2πn
Simplify
66⋅5x​=6⋅2π​+6⋅2πn
Simplify 66⋅5x​:5x
66⋅5x​
Multiply the numbers: 6⋅5=30=630x​
Divide the numbers: 630​=5=5x
Simplify 6⋅2π​+6⋅2πn:3π+12πn
6⋅2π​+6⋅2πn
6⋅2π​=3π
6⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π6​
Divide the numbers: 26​=3=3π
6⋅2πn=12πn
6⋅2πn
Multiply the numbers: 6⋅2=12=12πn
=3π+12πn
5x=3π+12πn
5x=3π+12πn
5x=3π+12πn
Divide both sides by 5
5x=3π+12πn
Divide both sides by 555x​=53π​+512πn​
Simplify
55x​=53π​+512πn​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 53π​+512πn​:53π+12πn​
53π​+512πn​
Apply rule ca​±cb​=ca±b​=53π+12πn​
x=53π+12πn​
x=53π+12πn​
x=53π+12πn​
3x​=π−(2π​−2x​)+2πn:x=−3π−12πn
3x​=π−(2π​−2x​)+2πn
Expand π−(2π​−2x​)+2πn:π−2π​+2x​+2πn
π−(2π​−2x​)+2πn
Apply rule ca​±cb​=ca±b​=π−2−x+π​+2πn
Apply the fraction rule: ca±b​=ca​±cb​2π−x​=−(2π​)−(−2x​)=π−(2π​)−(−2x​)+2πn
Remove parentheses: (a)=a,−(−a)=a=π−2π​+2x​+2πn
3x​=π−2π​+2x​+2πn
Multiply by LCM
3x​=π−2π​+2x​+2πn
Find Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Multiply by LCM=63x​⋅6=π6−2π​⋅6+2x​⋅6+2πn⋅6
Simplify
3x​⋅6=π6−2π​⋅6+2x​⋅6+2πn⋅6
Simplify 3x​⋅6:2x
3x​⋅6
Multiply fractions: a⋅cb​=ca⋅b​=3x⋅6​
Divide the numbers: 36​=2=2x
Simplify π6:6π
π6
Apply the commutative law: π6=6π6π
Simplify −2π​⋅6:−3π
−2π​⋅6
Multiply fractions: a⋅cb​=ca⋅b​=−2π6​
Divide the numbers: 26​=3=−3π
Simplify 2x​⋅6:3x
2x​⋅6
Multiply fractions: a⋅cb​=ca⋅b​=2x⋅6​
Divide the numbers: 26​=3=3x
Simplify 2πn⋅6:12πn
2πn⋅6
Multiply the numbers: 2⋅6=12=12πn
2x=6π−3π+3x+12πn
2x=3π+3x+12πn
2x=3π+3x+12πn
2x=3π+3x+12πn
Move 3xto the left side
2x=3π+3x+12πn
Subtract 3x from both sides2x−3x=3π+3x+12πn−3x
Simplify−x=3π+12πn
−x=3π+12πn
Divide both sides by −1
−x=3π+12πn
Divide both sides by −1−1−x​=−13π​+−112πn​
Simplify
−1−x​=−13π​+−112πn​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −13π​+−112πn​:−3π−12πn
−13π​+−112πn​
Apply rule ca​±cb​=ca±b​=−13π+12πn​
Apply the fraction rule: −ba​=−ba​=−13π+12πn​
Apply rule 1a​=a=−(3π+12πn)
Distribute parentheses=−(3π)−(12πn)
Apply minus-plus rules+(−a)=−a=−3π−12πn
x=−3π−12πn
x=−3π−12πn
x=−3π−12πn
x=53π+12πn​,x=−3π−12πn
x=53π+12πn​,x=−3π−12πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=(cot^2(x))/(csc^2(x))2tan^2(x)-3cot^2(x)=5solvefor x,13y=cos^4(1-2x)cos(x)+cos^2(x)+cos^3(x)=0cos(x)-sin(x)= 1/((sin(x)))-1/((cos(x)))

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x/3)=cos(x/2) ?

    The general solution for sin(x/3)=cos(x/2) is x=(3pi+12pin)/5 ,x=-3pi-12pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024