Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,13y=cos^4(1-2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​,x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
Solution steps
13y=cos4(1−2x)
Switch sidescos4(1−2x)=13y
Solve by substitution
cos4(1−2x)=13y
Let: cos(1−2x)=uu4=13y
u4=13y:u=13​y​​,u=−13​y​​,u=i13​y​​,u=−i13​y​​
u4=13y
Rewrite the equation with v=u2 and v2=u4v2=13y
Solve v2=13y:v=13y​,v=−13y​
v2=13y
For (g(x))2=f(a) the solutions are g(x)=f(a)​,−f(a)​
v=13y​,v=−13y​
v=13y​,v=−13y​
Substitute back v=u2,solve for u
Solve u2=13y​:u=13​y​​,u=−13​y​​
u2=13y​
Apply radical rule: assuming a≥0,b≥0u2=13​y​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=13​y​​,u=−13​y​​
Solve u2=−13y​:u=i13​y​​,u=−i13​y​​
u2=−13y​
Apply radical rule: assuming a≥0,b≥0u2=−13​y​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−13​y​​,u=−−13​y​​
Simplify −13​y​​:i13​y​​
−13​y​​
Apply radical rule: −a​=−1​a​, assuming a≥0−13​y​​=−1​13​y​​=−1​13​y​​
Apply imaginary number rule: −1​=i=i13​y​​
Simplify −−13​y​​:−i13​y​​
−−13​y​​
Simplify −13​y​​:i13​y​​
−13​y​​
Apply radical rule: −a​=−1​a​, assuming a≥0−13​y​​=−1​13​y​​=−1​13​y​​
Apply imaginary number rule: −1​=i=i13​y​​
=−i13​y​​
u=i13​y​​,u=−i13​y​​
The solutions are
u=13​y​​,u=−13​y​​,u=i13​y​​,u=−i13​y​​
Substitute back u=cos(1−2x)cos(1−2x)=13​y​​,cos(1−2x)=−13​y​​,cos(1−2x)=i13​y​​,cos(1−2x)=−i13​y​​
cos(1−2x)=13​y​​,cos(1−2x)=−13​y​​,cos(1−2x)=i13​y​​,cos(1−2x)=−i13​y​​
cos(1−2x)=13​y​​:x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​
cos(1−2x)=13​y​​
Apply trig inverse properties
cos(1−2x)=13​y​​
General solutions for cos(1−2x)=13​y​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πn1−2x=arccos(13​y​​)+2πn,1−2x=−arccos(13​y​​)+2πn
1−2x=arccos(13​y​​)+2πn,1−2x=−arccos(13​y​​)+2πn
Solve 1−2x=arccos(13​y​​)+2πn:x=−2arccos(13​y​​)​−πn+21​
1−2x=arccos(13​y​​)+2πn
Move 1to the right side
1−2x=arccos(13​y​​)+2πn
Subtract 1 from both sides1−2x−1=arccos(13​y​​)+2πn−1
Simplify−2x=arccos(13​y​​)+2πn−1
−2x=arccos(13​y​​)+2πn−1
Divide both sides by −2
−2x=arccos(13​y​​)+2πn−1
Divide both sides by −2−2−2x​=−2arccos(13​y​​)​+−22πn​−−21​
Simplify
−2−2x​=−2arccos(13​y​​)​+−22πn​−−21​
Simplify −2−2x​:x
−2−2x​
Apply the fraction rule: −b−a​=ba​=22x​
Divide the numbers: 22​=1=x
Simplify −2arccos(13​y​​)​+−22πn​−−21​:−2arccos(13​y​​)​−πn+21​
−2arccos(13​y​​)​+−22πn​−−21​
Apply the fraction rule: −ba​=−ba​=−2arccos(13​y​​)​+−22πn​−−21​
−22πn​=−πn
−22πn​
Apply the fraction rule: −ba​=−ba​=−22πn​
Divide the numbers: 22​=1=−πn
=−2arccos(13​y​​)​−πn−−21​
Apply the fraction rule: −ba​=−ba​=−2arccos(13​y​​)​−πn−(−21​)
Apply rule −(−a)=a=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
Solve 1−2x=−arccos(13​y​​)+2πn:x=2arccos(13​y​​)​−πn+21​
1−2x=−arccos(13​y​​)+2πn
Move 1to the right side
1−2x=−arccos(13​y​​)+2πn
Subtract 1 from both sides1−2x−1=−arccos(13​y​​)+2πn−1
Simplify−2x=−arccos(13​y​​)+2πn−1
−2x=−arccos(13​y​​)+2πn−1
Divide both sides by −2
−2x=−arccos(13​y​​)+2πn−1
Divide both sides by −2−2−2x​=−−2arccos(13​y​​)​+−22πn​−−21​
Simplify
−2−2x​=−−2arccos(13​y​​)​+−22πn​−−21​
Simplify −2−2x​:x
−2−2x​
Apply the fraction rule: −b−a​=ba​=22x​
Divide the numbers: 22​=1=x
Simplify −−2arccos(13​y​​)​+−22πn​−−21​:2arccos(13​y​​)​−πn+21​
−−2arccos(13​y​​)​+−22πn​−−21​
−2arccos(13​y​​)​=−2arccos(13​y​​)​
−2arccos(13​y​​)​
Apply the fraction rule: −ba​=−ba​=−2arccos(13​y​​)​
−22πn​=−πn
−22πn​
Apply the fraction rule: −ba​=−ba​=−22πn​
Divide the numbers: 22​=1=−πn
=−​−2arccos(13​y​​)​​−πn−−21​
Apply rule −(−a)=a=2arccos(13​y​​)​−πn−−21​
Apply the fraction rule: −ba​=−ba​=2arccos(13​y​​)​−πn−(−21​)
Apply rule −(−a)=a=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​
cos(1−2x)=−13​y​​:x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
cos(1−2x)=−13​y​​
Apply trig inverse properties
cos(1−2x)=−13​y​​
General solutions for cos(1−2x)=−13​y​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πn1−2x=arccos(−13​y​​)+2πn,1−2x=−arccos(−13​y​​)+2πn
1−2x=arccos(−13​y​​)+2πn,1−2x=−arccos(−13​y​​)+2πn
Solve 1−2x=arccos(−13​y​​)+2πn:x=−2arccos(−13​y​​)​−πn+21​
1−2x=arccos(−13​y​​)+2πn
Move 1to the right side
1−2x=arccos(−13​y​​)+2πn
Subtract 1 from both sides1−2x−1=arccos(−13​y​​)+2πn−1
Simplify−2x=arccos(−13​y​​)+2πn−1
−2x=arccos(−13​y​​)+2πn−1
Divide both sides by −2
−2x=arccos(−13​y​​)+2πn−1
Divide both sides by −2−2−2x​=−2arccos(−13​y​​)​+−22πn​−−21​
Simplify
−2−2x​=−2arccos(−13​y​​)​+−22πn​−−21​
Simplify −2−2x​:x
−2−2x​
Apply the fraction rule: −b−a​=ba​=22x​
Divide the numbers: 22​=1=x
Simplify −2arccos(−13​y​​)​+−22πn​−−21​:−2arccos(−13​y​​)​−πn+21​
−2arccos(−13​y​​)​+−22πn​−−21​
Apply the fraction rule: −ba​=−ba​=−2arccos(−13​y​​)​+−22πn​−−21​
−22πn​=−πn
−22πn​
Apply the fraction rule: −ba​=−ba​=−22πn​
Divide the numbers: 22​=1=−πn
=−2arccos(−13​y​​)​−πn−−21​
Apply the fraction rule: −ba​=−ba​=−2arccos(−13​y​​)​−πn−(−21​)
Apply rule −(−a)=a=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
Solve 1−2x=−arccos(−13​y​​)+2πn:x=2arccos(−13​y​​)​−πn+21​
1−2x=−arccos(−13​y​​)+2πn
Move 1to the right side
1−2x=−arccos(−13​y​​)+2πn
Subtract 1 from both sides1−2x−1=−arccos(−13​y​​)+2πn−1
Simplify−2x=−arccos(−13​y​​)+2πn−1
−2x=−arccos(−13​y​​)+2πn−1
Divide both sides by −2
−2x=−arccos(−13​y​​)+2πn−1
Divide both sides by −2−2−2x​=−−2arccos(−13​y​​)​+−22πn​−−21​
Simplify
−2−2x​=−−2arccos(−13​y​​)​+−22πn​−−21​
Simplify −2−2x​:x
−2−2x​
Apply the fraction rule: −b−a​=ba​=22x​
Divide the numbers: 22​=1=x
Simplify −−2arccos(−13​y​​)​+−22πn​−−21​:2arccos(−13​y​​)​−πn+21​
−−2arccos(−13​y​​)​+−22πn​−−21​
−2arccos(−13​y​​)​=−2arccos(−13​y​​)​
−2arccos(−13​y​​)​
Apply the fraction rule: −ba​=−ba​=−2arccos(−13​y​​)​
−22πn​=−πn
−22πn​
Apply the fraction rule: −ba​=−ba​=−22πn​
Divide the numbers: 22​=1=−πn
=−​−2arccos(−13​y​​)​​−πn−−21​
Apply rule −(−a)=a=2arccos(−13​y​​)​−πn−−21​
Apply the fraction rule: −ba​=−ba​=2arccos(−13​y​​)​−πn−(−21​)
Apply rule −(−a)=a=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
cos(1−2x)=i13​y​​:No Solution
cos(1−2x)=i13​y​​
NoSolution
cos(1−2x)=−i13​y​​:No Solution
cos(1−2x)=−i13​y​​
NoSolution
Combine all the solutionsx=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​,x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)+cos^2(x)+cos^3(x)=0cos(x)-sin(x)= 1/((sin(x)))-1/((cos(x)))sin^2(x)+cos^5(x)=216=4+9-12cos(x)tanh(z)+2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,13y=cos^4(1-2x) ?

    The general solution for solvefor x,13y=cos^4(1-2x) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024