Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)=2tan(x)+2tan^3(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)=2tan(x)+2tan3(x)

Solution

x=πn
+1
Degrees
x=0∘+180∘n
Solution steps
tan2(x)=2tan(x)+2tan3(x)
Solve by substitution
tan2(x)=2tan(x)+2tan3(x)
Let: tan(x)=uu2=2u+2u3
u2=2u+2u3:u=0,u=41​+i415​​,u=41​−i415​​
u2=2u+2u3
Switch sides2u+2u3=u2
Move u2to the left side
2u+2u3=u2
Subtract u2 from both sides2u+2u3−u2=u2−u2
Simplify2u+2u3−u2=0
2u+2u3−u2=0
Factor 2u+2u3−u2:u(2u2−u+2)
2u+2u3−u2
Apply exponent rule: ab+c=abacu2=uu=2u2u−uu+2u
Factor out common term u=u(2u2−u+2)
u(2u2−u+2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or2u2−u+2=0
Solve 2u2−u+2=0:u=41​+i415​​,u=41​−i415​​
2u2−u+2=0
Solve with the quadratic formula
2u2−u+2=0
Quadratic Equation Formula:
For a=2,b=−1,c=2u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅2​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅2​​
Simplify (−1)2−4⋅2⋅2​:15​i
(−1)2−4⋅2⋅2​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅2=16
4⋅2⋅2
Multiply the numbers: 4⋅2⋅2=16=16
=1−16​
Subtract the numbers: 1−16=−15=−15​
Apply radical rule: −a​=−1​a​−15​=−1​15​=−1​15​
Apply imaginary number rule: −1​=i=15​i
u1,2​=2⋅2−(−1)±15​i​
Separate the solutionsu1​=2⋅2−(−1)+15​i​,u2​=2⋅2−(−1)−15​i​
u=2⋅2−(−1)+15​i​:41​+i415​​
2⋅2−(−1)+15​i​
Apply rule −(−a)=a=2⋅21+15​i​
Multiply the numbers: 2⋅2=4=41+15​i​
Rewrite 41+15​i​ in standard complex form: 41​+415​​i
41+15​i​
Apply the fraction rule: ca±b​=ca​±cb​41+15​i​=41​+415​i​=41​+415​i​
=41​+415​​i
u=2⋅2−(−1)−15​i​:41​−i415​​
2⋅2−(−1)−15​i​
Apply rule −(−a)=a=2⋅21−15​i​
Multiply the numbers: 2⋅2=4=41−15​i​
Rewrite 41−15​i​ in standard complex form: 41​−415​​i
41−15​i​
Apply the fraction rule: ca±b​=ca​±cb​41−15​i​=41​−415​i​=41​−415​i​
=41​−415​​i
The solutions to the quadratic equation are:u=41​+i415​​,u=41​−i415​​
The solutions areu=0,u=41​+i415​​,u=41​−i415​​
Substitute back u=tan(x)tan(x)=0,tan(x)=41​+i415​​,tan(x)=41​−i415​​
tan(x)=0,tan(x)=41​+i415​​,tan(x)=41​−i415​​
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)=41​+i415​​:No Solution
tan(x)=41​+i415​​
NoSolution
tan(x)=41​−i415​​:No Solution
tan(x)=41​−i415​​
NoSolution
Combine all the solutionsx=πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor t,cos(wt+k)=(20)/((2*pi*f)^2)0=-cos(x)(2sin(x)+3)28cos(t)=20,0<= t<3608tan(x/2)+8cos(x)tan(x/2)=1sin(a)=0.5937

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(x)=2tan(x)+2tan^3(x) ?

    The general solution for tan^2(x)=2tan(x)+2tan^3(x) is x=pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024