Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8tan(x/2)+8cos(x)tan(x/2)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8tan(2x​)+8cos(x)tan(2x​)=1

Solution

x=0.12532…+2πn,x=π−0.12532…+2πn
+1
Degrees
x=7.18075…∘+360∘n,x=172.81924…∘+360∘n
Solution steps
8tan(2x​)+8cos(x)tan(2x​)=1
Subtract 1 from both sides8tan(2x​)+8cos(x)tan(2x​)−1=0
Let: u=2x​8tan(u)+8cos(2u)tan(u)−1=0
Rewrite using trig identities
−1+8tan(u)+8cos(2u)tan(u)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=−1+8tan(u)+8(2cos2(u)−1)tan(u)
Simplify −1+8tan(u)+8(2cos2(u)−1)tan(u):16cos2(u)tan(u)−1
−1+8tan(u)+8(2cos2(u)−1)tan(u)
=−1+8tan(u)+8tan(u)(2cos2(u)−1)
Expand 8tan(u)(2cos2(u)−1):16cos2(u)tan(u)−8tan(u)
8tan(u)(2cos2(u)−1)
Apply the distributive law: a(b−c)=ab−aca=8tan(u),b=2cos2(u),c=1=8tan(u)⋅2cos2(u)−8tan(u)⋅1
=8⋅2cos2(u)tan(u)−8⋅1⋅tan(u)
Simplify 8⋅2cos2(u)tan(u)−8⋅1⋅tan(u):16cos2(u)tan(u)−8tan(u)
8⋅2cos2(u)tan(u)−8⋅1⋅tan(u)
Multiply the numbers: 8⋅2=16=16cos2(u)tan(u)−8⋅1⋅tan(u)
Multiply the numbers: 8⋅1=8=16cos2(u)tan(u)−8tan(u)
=16cos2(u)tan(u)−8tan(u)
=−1+8tan(u)+16cos2(u)tan(u)−8tan(u)
Simplify −1+8tan(u)+16cos2(u)tan(u)−8tan(u):16cos2(u)tan(u)−1
−1+8tan(u)+16cos2(u)tan(u)−8tan(u)
Group like terms=8tan(u)+16cos2(u)tan(u)−8tan(u)−1
Add similar elements: 8tan(u)−8tan(u)=0=16cos2(u)tan(u)−1
=16cos2(u)tan(u)−1
=16cos2(u)tan(u)−1
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+16cos2(u)cos(u)sin(u)​
16cos2(u)cos(u)sin(u)​=16sin(u)cos(u)
16cos2(u)cos(u)sin(u)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(u)sin(u)⋅16cos2(u)​
Cancel the common factor: cos(u)=16sin(u)cos(u)
=−1+16sin(u)cos(u)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=−1+16⋅2sin(2u)​
−1+16⋅2sin(2u)​=0
16⋅2sin(2u)​=8sin(2u)
16⋅2sin(2u)​
Multiply fractions: a⋅cb​=ca⋅b​=2sin(2u)⋅16​
Divide the numbers: 216​=8=8sin(2u)
−1+8sin(2u)=0
Move 1to the right side
−1+8sin(2u)=0
Add 1 to both sides−1+8sin(2u)+1=0+1
Simplify8sin(2u)=1
8sin(2u)=1
Divide both sides by 8
8sin(2u)=1
Divide both sides by 888sin(2u)​=81​
Simplifysin(2u)=81​
sin(2u)=81​
Apply trig inverse properties
sin(2u)=81​
General solutions for sin(2u)=81​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2u=arcsin(81​)+2πn,2u=π−arcsin(81​)+2πn
2u=arcsin(81​)+2πn,2u=π−arcsin(81​)+2πn
Solve 2u=arcsin(81​)+2πn:u=2arcsin(81​)​+πn
2u=arcsin(81​)+2πn
Divide both sides by 2
2u=arcsin(81​)+2πn
Divide both sides by 222u​=2arcsin(81​)​+22πn​
Simplifyu=2arcsin(81​)​+πn
u=2arcsin(81​)​+πn
Solve 2u=π−arcsin(81​)+2πn:u=2π​−2arcsin(81​)​+πn
2u=π−arcsin(81​)+2πn
Divide both sides by 2
2u=π−arcsin(81​)+2πn
Divide both sides by 222u​=2π​−2arcsin(81​)​+22πn​
Simplifyu=2π​−2arcsin(81​)​+πn
u=2π​−2arcsin(81​)​+πn
u=2arcsin(81​)​+πn,u=2π​−2arcsin(81​)​+πn
Substitute back u=2x​
2x​=2arcsin(81​)​+πn:x=arcsin(81​)+2πn
2x​=2arcsin(81​)​+πn
Multiply both sides by 2
2x​=2arcsin(81​)​+πn
Multiply both sides by 222x​=2⋅2arcsin(81​)​+2πn
Simplify
22x​=2⋅2arcsin(81​)​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2arcsin(81​)​+2πn:arcsin(81​)+2πn
2⋅2arcsin(81​)​+2πn
2⋅2arcsin(81​)​=arcsin(81​)
2⋅2arcsin(81​)​
Multiply fractions: a⋅cb​=ca⋅b​=2arcsin(81​)⋅2​
Cancel the common factor: 2=arcsin(81​)
=arcsin(81​)+2πn
x=arcsin(81​)+2πn
x=arcsin(81​)+2πn
x=arcsin(81​)+2πn
2x​=2π​−2arcsin(81​)​+πn:x=π−arcsin(81​)+2πn
2x​=2π​−2arcsin(81​)​+πn
Multiply both sides by 2
2x​=2π​−2arcsin(81​)​+πn
Multiply both sides by 222x​=2⋅2π​−2⋅2arcsin(81​)​+2πn
Simplify
22x​=2⋅2π​−2⋅2arcsin(81​)​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​−2⋅2arcsin(81​)​+2πn:π−arcsin(81​)+2πn
2⋅2π​−2⋅2arcsin(81​)​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2arcsin(81​)​=arcsin(81​)
2⋅2arcsin(81​)​
Multiply fractions: a⋅cb​=ca⋅b​=2arcsin(81​)⋅2​
Cancel the common factor: 2=arcsin(81​)
=π−arcsin(81​)+2πn
x=π−arcsin(81​)+2πn
x=π−arcsin(81​)+2πn
x=π−arcsin(81​)+2πn
x=arcsin(81​)+2πn,x=π−arcsin(81​)+2πn
Show solutions in decimal formx=0.12532…+2πn,x=π−0.12532…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(a)=0.5937tan(x)= 18/25sin^2(x)= 3/21.5=1+sin(x/3)sqrt(3)*tan(x)+2sec(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for 8tan(x/2)+8cos(x)tan(x/2)=1 ?

    The general solution for 8tan(x/2)+8cos(x)tan(x/2)=1 is x=0.12532…+2pin,x=pi-0.12532…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024