Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor θ,cos(θ/2+30)=sin(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

θ=9360∘+2160∘n​,θ=3720∘+2160∘n​
+1
Radians
θ=92π​+912π​n,θ=34π​+312π​n
Solution steps
cos(2θ​+30∘)=sin(θ)
Rewrite using trig identities
cos(2θ​+30∘)=sin(θ)
Use the following identity: cos(x)=sin(90∘−x)cos(2θ​+30∘)=sin(90∘−(2θ​+30∘))
cos(2θ​+30∘)=sin(90∘−(2θ​+30∘))
Apply trig inverse properties
cos(2θ​+30∘)=sin(90∘−(2θ​+30∘))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnθ=90∘−(2θ​+30∘)+360∘n,θ=180∘−(90∘−(2θ​+30∘))+360∘n
θ=90∘−(2θ​+30∘)+360∘n,θ=180∘−(90∘−(2θ​+30∘))+360∘n
θ=90∘−(2θ​+30∘)+360∘n:θ=9360∘+2160∘n​
θ=90∘−(2θ​+30∘)+360∘n
Move (2θ​+30∘)to the left side
θ=90∘−(2θ​+30∘)+360∘n
Add (2θ​+30∘) to both sidesθ+2θ​+30∘=90∘−(2θ​+30∘)+360∘n+2θ​+30∘
Simplify
θ+2θ​+30∘=90∘−(2θ​+30∘)+360∘n+2θ​+30∘
Simplify θ+2θ​+30∘:69θ+180∘​
θ+2θ​+30∘
Convert element to fraction: θ=1θ​=2θ​+30∘+1θ​
Least Common Multiplier of 2,6,1:6
2,6,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 1
Compute a number comprised of factors that appear in at least one of the following:
2,6,1
=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2θ​:multiply the denominator and numerator by 32θ​=2⋅3θ⋅3​=6θ⋅3​
For 1θ​:multiply the denominator and numerator by 61θ​=1⋅6θ⋅6​=6θ⋅6​
=6θ⋅3​+30∘+6θ⋅6​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6θ⋅3+180∘+θ⋅6​
θ⋅3+180∘+θ⋅6=9θ+180∘
θ⋅3+180∘+θ⋅6
Group like terms=3θ+6θ+180∘
Add similar elements: 3θ+6θ=9θ=9θ+180∘
=69θ+180∘​
Simplify 90∘−(2θ​+30∘)+360∘n+2θ​+30∘:90∘+360∘n
90∘−(2θ​+30∘)+360∘n+2θ​+30∘
Add similar elements: −(2θ​+30∘)+2θ​+30∘=0
=90∘+360∘n
69θ+180∘​=90∘+360∘n
69θ+180∘​=90∘+360∘n
69θ+180∘​=90∘+360∘n
Multiply both sides by 6
69θ+180∘​=90∘+360∘n
Multiply both sides by 666(9θ+180∘)​=6⋅90∘+6⋅360∘n
Simplify
66(9θ+180∘)​=6⋅90∘+6⋅360∘n
Simplify 66(9θ+180∘)​:9θ+180∘
66(9θ+180∘)​
Divide the numbers: 66​=1=9θ+180∘
Simplify 6⋅90∘+6⋅360∘n:540∘+2160∘n
6⋅90∘+6⋅360∘n
6⋅90∘=540∘
6⋅90∘
Multiply fractions: a⋅cb​=ca⋅b​=540∘
Divide the numbers: 26​=3=540∘
6⋅360∘n=2160∘n
6⋅360∘n
Multiply the numbers: 6⋅2=12=2160∘n
=540∘+2160∘n
9θ+180∘=540∘+2160∘n
9θ+180∘=540∘+2160∘n
9θ+180∘=540∘+2160∘n
Move 180∘to the right side
9θ+180∘=540∘+2160∘n
Subtract 180∘ from both sides9θ+180∘−180∘=540∘+2160∘n−180∘
Simplify9θ=360∘+2160∘n
9θ=360∘+2160∘n
Divide both sides by 9
9θ=360∘+2160∘n
Divide both sides by 999θ​=40∘+92160∘n​
Simplify
99θ​=40∘+92160∘n​
Simplify 99θ​:θ
99θ​
Divide the numbers: 99​=1=θ
Simplify 40∘+92160∘n​:9360∘+2160∘n​
40∘+92160∘n​
Apply rule ca​±cb​=ca±b​=9360∘+2160∘n​
θ=9360∘+2160∘n​
θ=9360∘+2160∘n​
θ=9360∘+2160∘n​
θ=180∘−(90∘−(2θ​+30∘))+360∘n:θ=3720∘+2160∘n​
θ=180∘−(90∘−(2θ​+30∘))+360∘n
Move (90∘−(2θ​+30∘))to the left side
θ=180∘−(90∘−(2θ​+30∘))+360∘n
Add (90∘−(2θ​+30∘)) to both sidesθ+90∘−(2θ​+30∘)=180∘−(90∘−(2θ​+30∘))+360∘n+90∘−(2θ​+30∘)
Simplify
θ+90∘−(2θ​+30∘)=180∘−(90∘−(2θ​+30∘))+360∘n+90∘−(2θ​+30∘)
Simplify θ+90∘−(2θ​+30∘):63θ+360∘​
θ+90∘−(2θ​+30∘)
−(2θ​+30∘):−2θ​−30∘
−(2θ​+30∘)
Distribute parentheses=−(2θ​)−(30∘)
Apply minus-plus rules+(−a)=−a=−2θ​−30∘
=θ+90∘−2θ​−30∘
Simplify θ+90∘−2θ​−30∘:63θ+360∘​
θ+90∘−2θ​−30∘
Group like terms=θ−2θ​+90∘−30∘
Combine the fractions −2θ​+90∘:2−θ+180∘​
Apply rule ca​±cb​=ca±b​=2−θ+180∘​
=θ+2−θ+180∘​−30∘
Convert element to fraction: θ=1θ​=2−θ+180∘​−30∘+1θ​
Least Common Multiplier of 2,6,1:6
2,6,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 1
Compute a number comprised of factors that appear in at least one of the following:
2,6,1
=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2−θ+180∘​:multiply the denominator and numerator by 32−θ+180∘​=2⋅3(−θ+180∘)⋅3​=6(−θ+180∘)⋅3​
For 1θ​:multiply the denominator and numerator by 61θ​=1⋅6θ⋅6​=6θ⋅6​
=6(−θ+180∘)⋅3​−30∘+6θ⋅6​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6(−θ+180∘)⋅3−180∘+θ⋅6​
Expand (−θ+180∘)⋅3−180∘+θ⋅6:3θ+360∘
(−θ+180∘)⋅3−180∘+θ⋅6
=3(−θ+180∘)−180∘+6θ
Expand 3(−θ+180∘):−3θ+540∘
3(−θ+180∘)
Apply the distributive law: a(b+c)=ab+aca=3,b=−θ,c=180∘=3(−θ)+540∘
Apply minus-plus rules+(−a)=−a=−3θ+540∘
=−3θ+540∘−180∘+θ⋅6
Simplify −3θ+540∘−180∘+θ⋅6:3θ+360∘
−3θ+540∘−180∘+θ⋅6
Group like terms=−3θ+6θ+540∘−180∘
Add similar elements: −3θ+6θ=3θ=3θ+540∘−180∘
Add similar elements: 540∘−180∘=360∘=3θ+360∘
=3θ+360∘
=63θ+360∘​
=63θ+360∘​
Simplify 180∘−(90∘−(2θ​+30∘))+360∘n+90∘−(2θ​+30∘):180∘+360∘n
180∘−(90∘−(2θ​+30∘))+360∘n+90∘−(2θ​+30∘)
Add similar elements: −(90∘−(2θ​+30∘))+90∘−(2θ​+30∘)=0
=180∘+360∘n
63θ+360∘​=180∘+360∘n
63θ+360∘​=180∘+360∘n
63θ+360∘​=180∘+360∘n
Multiply both sides by 6
63θ+360∘​=180∘+360∘n
Multiply both sides by 666(3θ+360∘)​=1080∘+6⋅360∘n
Simplify3θ+360∘=1080∘+2160∘n
3θ+360∘=1080∘+2160∘n
Move 360∘to the right side
3θ+360∘=1080∘+2160∘n
Subtract 360∘ from both sides3θ+360∘−360∘=1080∘+2160∘n−360∘
Simplify3θ=720∘+2160∘n
3θ=720∘+2160∘n
Divide both sides by 3
3θ=720∘+2160∘n
Divide both sides by 333θ​=240∘+32160∘n​
Simplify
33θ​=240∘+32160∘n​
Simplify 33θ​:θ
33θ​
Divide the numbers: 33​=1=θ
Simplify 240∘+32160∘n​:3720∘+2160∘n​
240∘+32160∘n​
Apply rule ca​±cb​=ca±b​=3720∘+2160∘n​
θ=3720∘+2160∘n​
θ=3720∘+2160∘n​
θ=3720∘+2160∘n​
θ=9360∘+2160∘n​,θ=3720∘+2160∘n​
θ=9360∘+2160∘n​,θ=3720∘+2160∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sin^2(θ)=1+3sin^2(θ)5sin(2θ)-8sin(θ)=0tan(θ)=(5sqrt(3))/5solvefor f,r= 8/(sec(f^0))2sin(x)-sqrt(2)=0,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor θ,cos(θ/2+30)=sin(θ) ?

    The general solution for solvefor θ,cos(θ/2+30)=sin(θ) is θ=(360+2160n)/9 ,θ=(720+2160n)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024