Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)+((1-sqrt(2))/2)cos(x)-(sqrt(2))/4 =0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)+(21−2​​)cos(x)−42​​=0

Solution

x=4π​+2πn,x=47π​+2πn,x=32π​+2πn,x=34π​+2πn
+1
Degrees
x=45∘+360∘n,x=315∘+360∘n,x=120∘+360∘n,x=240∘+360∘n
Solution steps
cos2(x)+(21−2​​)cos(x)−42​​=0
Solve by substitution
cos2(x)+21−2​​cos(x)−42​​=0
Let: cos(x)=uu2+21−2​​u−42​​=0
u2+21−2​​u−42​​=0:u=22​​,u=−21​
u2+21−2​​u−42​​=0
Find Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Multiply by LCM=4u2⋅4+21−2​​u⋅4−42​​⋅4=0⋅4
Simplify4u2+2(1−2​)u−2​=0
Expand 4u2+2(1−2​)u−2​:4u2+2u−22​u−2​
4u2+2(1−2​)u−2​
Expand 2u(1−2​):2u−22​u
2u(1−2​)
Apply the distributive law: a(b−c)=ab−aca=2u,b=1,c=2​=2u⋅1−2u2​
=2⋅1⋅u−22​u
Multiply the numbers: 2⋅1=2=2u−22​u
=4u2+2u−22​u−2​
4u2+2u−22​u−2​=0
Write in the standard form ax2+bx+c=04u2+(2−22​)u−2​=0
Solve with the quadratic formula
4u2+(2−22​)u−2​=0
Quadratic Equation Formula:
For a=4,b=2−22​,c=−2​u1,2​=2⋅4−(2−22​)±(2−22​)2−4⋅4(−2​)​​
u1,2​=2⋅4−(2−22​)±(2−22​)2−4⋅4(−2​)​​
(2−22​)2−4⋅4(−2​)​=2+22​
(2−22​)2−4⋅4(−2​)​
Apply rule −(−a)=a=(2−22​)2+4⋅42​​
Multiply the numbers: 4⋅4=16=(2−22​)2+162​​
Expand (2−22​)2+162​:12+82​
(2−22​)2+162​
(2−22​)2:12−82​
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2,b=22​
=22−2⋅2⋅22​+(22​)2
Simplify 22−2⋅2⋅22​+(22​)2:12−82​
22−2⋅2⋅22​+(22​)2
22=4
22
22=4=4
2⋅2⋅22​=82​
2⋅2⋅22​
Multiply the numbers: 2⋅2⋅2=8=82​
(22​)2=8
(22​)2
Apply exponent rule: (a⋅b)n=anbn=22(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=22⋅2
Apply exponent rule: ab⋅ac=ab+c22⋅2=22+1=22+1
Add the numbers: 2+1=3=23
23=8=8
=4−82​+8
Add the numbers: 4+8=12=12−82​
=12−82​
=12−82​+162​
Add similar elements: −82​+162​=82​=12+82​
=12+82​​
=4+82​+8​
=2⋅2+82​+8​
=(2​)2(2​)2+82​+(8​)2​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=(2​)2(2​)2+82​+(22​)2​
22​2​⋅22​=82​
22​2​⋅22​
Multiply the numbers: 2⋅2=4=42​2​2​
Apply exponent rule: ab⋅ac=ab+c2​2​2​=221​⋅221​⋅221​=221​+21​+21​=4⋅221​+21​+21​
221​+21​+21​=22​
221​+21​+21​
Combine the fractions 21​+21​+21​:23​
Apply rule ca​±cb​=ca±b​=21+1+1​
Add the numbers: 1+1+1=3=23​
=223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=4⋅22​
Multiply the numbers: 4⋅2=8=82​
=(2​2​)2+22​2​⋅22​+(22​)2​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(2​2​)2+22​2​⋅22​+(22​)2=(2​2​+22​)2=(2​2​+22​)2​
Apply radical rule: (2​2​+22​)2​=2​2​+22​=2​2​+22​
Apply radical rule: a​a​=a2​2​=2=2+22​
u1,2​=2⋅4−(2−22​)±(2+22​)​
Separate the solutionsu1​=2⋅4−(2−22​)+2+22​​,u2​=2⋅4−(2−22​)−(2+22​)​
u=2⋅4−(2−22​)+2+22​​:22​​
2⋅4−(2−22​)+2+22​​
Multiply the numbers: 2⋅4=8=8−(2−22​)+2+22​​
Expand −(2−22​)+2+22​:42​
−(2−22​)+2+22​
−(2−22​):−2+22​
−(2−22​)
Distribute parentheses=−(2)−(−22​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+22​
=−2+22​+2+22​
Simplify −2+22​+2+22​:42​
−2+22​+2+22​
Add similar elements: 22​+22​=42​=−2+42​+2
−2+2=0=42​
=42​
=842​​
Cancel the common factor: 4=22​​
u=2⋅4−(2−22​)−(2+22​)​:−21​
2⋅4−(2−22​)−(2+22​)​
Multiply the numbers: 2⋅4=8=8−(2−22​)−(2+22​)​
Expand −(2−22​)−(2+22​):−4
−(2−22​)−(2+22​)
−(2−22​):−2+22​
−(2−22​)
Distribute parentheses=−(2)−(−22​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2+22​
=−2+22​−(2+22​)
−(2+22​):−2−22​
−(2+22​)
Distribute parentheses=−(2)−(22​)
Apply minus-plus rules+(−a)=−a=−2−22​
=−2+22​−2−22​
Simplify −2+22​−2−22​:−4
−2+22​−2−22​
Add similar elements: 22​−22​=0=−2−2
Subtract the numbers: −2−2=−4=−4
=−4
=8−4​
Apply the fraction rule: b−a​=−ba​=−84​
Cancel the common factor: 4=−21​
The solutions to the quadratic equation are:u=22​​,u=−21​
Substitute back u=cos(x)cos(x)=22​​,cos(x)=−21​
cos(x)=22​​,cos(x)=−21​
cos(x)=22​​:x=4π​+2πn,x=47π​+2πn
cos(x)=22​​
General solutions for cos(x)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
Combine all the solutionsx=4π​+2πn,x=47π​+2πn,x=32π​+2πn,x=34π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^2(x/2)=-2sin^2(θ)-1=2sin(θ)-3sin^2(x)+2=016sin(3x)cos(x)+8sqrt(3)sin(3x)-2cos(x)-sqrt(3)=0tan(C)=2.56
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024