Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

7cos(2θ)-9=-9sin(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

7cos(2θ)−9=−9sin(θ)

Solution

NoSolutionforθ∈R
Solution steps
7cos(2θ)−9=−9sin(θ)
Subtract −9sin(θ) from both sides7cos(2θ)−9+9sin(θ)=0
Rewrite using trig identities
−9+7cos(2θ)+9sin(θ)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−9+7(1−2sin2(θ))+9sin(θ)
Simplify −9+7(1−2sin2(θ))+9sin(θ):9sin(θ)−14sin2(θ)−2
−9+7(1−2sin2(θ))+9sin(θ)
Expand 7(1−2sin2(θ)):7−14sin2(θ)
7(1−2sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=7,b=1,c=2sin2(θ)=7⋅1−7⋅2sin2(θ)
Simplify 7⋅1−7⋅2sin2(θ):7−14sin2(θ)
7⋅1−7⋅2sin2(θ)
Multiply the numbers: 7⋅1=7=7−7⋅2sin2(θ)
Multiply the numbers: 7⋅2=14=7−14sin2(θ)
=7−14sin2(θ)
=−9+7−14sin2(θ)+9sin(θ)
Add/Subtract the numbers: −9+7=−2=9sin(θ)−14sin2(θ)−2
=9sin(θ)−14sin2(θ)−2
−2−14sin2(θ)+9sin(θ)=0
Solve by substitution
−2−14sin2(θ)+9sin(θ)=0
Let: sin(θ)=u−2−14u2+9u=0
−2−14u2+9u=0:u=289​−i2831​​,u=289​+i2831​​
−2−14u2+9u=0
Write in the standard form ax2+bx+c=0−14u2+9u−2=0
Solve with the quadratic formula
−14u2+9u−2=0
Quadratic Equation Formula:
For a=−14,b=9,c=−2u1,2​=2(−14)−9±92−4(−14)(−2)​​
u1,2​=2(−14)−9±92−4(−14)(−2)​​
Simplify 92−4(−14)(−2)​:31​i
92−4(−14)(−2)​
Apply rule −(−a)=a=92−4⋅14⋅2​
Multiply the numbers: 4⋅14⋅2=112=92−112​
Apply imaginary number rule: −a​=ia​=i112−92​
−92+112​=31​
−92+112​
92=81=−81+112​
Add/Subtract the numbers: −81+112=31=31​
=31​i
u1,2​=2(−14)−9±31​i​
Separate the solutionsu1​=2(−14)−9+31​i​,u2​=2(−14)−9−31​i​
u=2(−14)−9+31​i​:289​−i2831​​
2(−14)−9+31​i​
Remove parentheses: (−a)=−a=−2⋅14−9+31​i​
Multiply the numbers: 2⋅14=28=−28−9+31​i​
Apply the fraction rule: −ba​=−ba​=−28−9+31​i​
Rewrite −28−9+31​i​ in standard complex form: 289​−2831​​i
−28−9+31​i​
Apply the fraction rule: ca±b​=ca​±cb​28−9+31​i​=−(−289​)−(2831​i​)=−(−289​)−(2831​i​)
Remove parentheses: (a)=a,−(−a)=a=289​−2831​i​
=289​−2831​​i
u=2(−14)−9−31​i​:289​+i2831​​
2(−14)−9−31​i​
Remove parentheses: (−a)=−a=−2⋅14−9−31​i​
Multiply the numbers: 2⋅14=28=−28−9−31​i​
Apply the fraction rule: −ba​=−ba​=−28−9−31​i​
Rewrite −28−9−31​i​ in standard complex form: 289​+2831​​i
−28−9−31​i​
Apply the fraction rule: ca±b​=ca​±cb​28−9−31​i​=−(−289​)−(−2831​i​)=−(−289​)−(−2831​i​)
Apply rule −(−a)=a=289​+2831​i​
=289​+2831​​i
The solutions to the quadratic equation are:u=289​−i2831​​,u=289​+i2831​​
Substitute back u=sin(θ)sin(θ)=289​−i2831​​,sin(θ)=289​+i2831​​
sin(θ)=289​−i2831​​,sin(θ)=289​+i2831​​
sin(θ)=289​−i2831​​:No Solution
sin(θ)=289​−i2831​​
NoSolution
sin(θ)=289​+i2831​​:No Solution
sin(θ)=289​+i2831​​
NoSolution
Combine all the solutionsNoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1-sin(x)=3cos(x)tan(a)= 8/52cos^2(x)-7cos(x)+3=0,(0,2pi)cos^2(x)-3sin^2(x)-1=0tanh(x)+4sech(x)=4

Frequently Asked Questions (FAQ)

  • What is the general solution for 7cos(2θ)-9=-9sin(θ) ?

    The general solution for 7cos(2θ)-9=-9sin(θ) is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024