Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tanh(x)+4sech(x)=4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tanh(x)+4sech(x)=4

Solution

x=0,x=ln(35​)
+1
Degrees
x=0∘,x=29.26815…∘
Solution steps
tanh(x)+4sech(x)=4
Rewrite using trig identities
tanh(x)+4sech(x)=4
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​ex+e−xex−e−x​+4sech(x)=4
Use the Hyperbolic identity: sech(x)=ex+e−x2​ex+e−xex−e−x​+4⋅ex+e−x2​=4
ex+e−xex−e−x​+4⋅ex+e−x2​=4
ex+e−xex−e−x​+4⋅ex+e−x2​=4:x=0,x=ln(35​)
ex+e−xex−e−x​+4⋅ex+e−x2​=4
Multiply both sides by ex+e−xex+e−xex−e−x​(ex+e−x)+4⋅ex+e−x2​(ex+e−x)=4(ex+e−x)
Simplifyex−e−x+8=4(ex+e−x)
Apply exponent rules
ex−e−x+8=4(ex+e−x)
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex−(ex)−1+8=4(ex+(ex)−1)
ex−(ex)−1+8=4(ex+(ex)−1)
Rewrite the equation with ex=uu−(u)−1+8=4(u+(u)−1)
Solve u−u−1+8=4(u+u−1):u=1,u=35​
u−u−1+8=4(u+u−1)
Refineu−u1​+8=4(u+u1​)
Multiply both sides by u
u−u1​+8=4(u+u1​)
Multiply both sides by uuu−u1​u+8u=4(u+u1​)u
Simplify
uu−u1​u+8u=4(u+u1​)u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
u2−1+8u=4(u+u1​)u
u2−1+8u=4(u+u1​)u
u2−1+8u=4(u+u1​)u
Expand 4(u+u1​)u:4u2+4
4(u+u1​)u
=4u(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=4u,b=u,c=u1​=4uu+4uu1​
=4uu+4⋅u1​u
Simplify 4uu+4⋅u1​u:4u2+4
4uu+4⋅u1​u
4uu=4u2
4uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=4u1+1
Add the numbers: 1+1=2=4u2
4⋅u1​u=4
4⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅4u​
Cancel the common factor: u=1⋅4
Multiply the numbers: 1⋅4=4=4
=4u2+4
=4u2+4
u2−1+8u=4u2+4
Move 1to the right side
u2−1+8u=4u2+4
Add 1 to both sidesu2−1+8u+1=4u2+4+1
Simplifyu2+8u=4u2+5
u2+8u=4u2+5
Solve u2+8u=4u2+5:u=1,u=35​
u2+8u=4u2+5
Move 5to the left side
u2+8u=4u2+5
Subtract 5 from both sidesu2+8u−5=4u2+5−5
Simplifyu2+8u−5=4u2
u2+8u−5=4u2
Move 4u2to the left side
u2+8u−5=4u2
Subtract 4u2 from both sidesu2+8u−5−4u2=4u2−4u2
Simplify−3u2+8u−5=0
−3u2+8u−5=0
Solve with the quadratic formula
−3u2+8u−5=0
Quadratic Equation Formula:
For a=−3,b=8,c=−5u1,2​=2(−3)−8±82−4(−3)(−5)​​
u1,2​=2(−3)−8±82−4(−3)(−5)​​
82−4(−3)(−5)​=2
82−4(−3)(−5)​
Apply rule −(−a)=a=82−4⋅3⋅5​
Multiply the numbers: 4⋅3⋅5=60=82−60​
82=64=64−60​
Subtract the numbers: 64−60=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u1,2​=2(−3)−8±2​
Separate the solutionsu1​=2(−3)−8+2​,u2​=2(−3)−8−2​
u=2(−3)−8+2​:1
2(−3)−8+2​
Remove parentheses: (−a)=−a=−2⋅3−8+2​
Add/Subtract the numbers: −8+2=−6=−2⋅3−6​
Multiply the numbers: 2⋅3=6=−6−6​
Apply the fraction rule: −b−a​=ba​=66​
Apply rule aa​=1=1
u=2(−3)−8−2​:35​
2(−3)−8−2​
Remove parentheses: (−a)=−a=−2⋅3−8−2​
Subtract the numbers: −8−2=−10=−2⋅3−10​
Multiply the numbers: 2⋅3=6=−6−10​
Apply the fraction rule: −b−a​=ba​=610​
Cancel the common factor: 2=35​
The solutions to the quadratic equation are:u=1,u=35​
u=1,u=35​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u−1+8 and compare to zero
u=0
Take the denominator(s) of 4(u+u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=35​
u=1,u=35​
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=35​:x=ln(35​)
ex=35​
Apply exponent rules
ex=35​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(35​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(35​)
x=ln(35​)
x=0,x=ln(35​)
Verify Solutions:x=0True,x=ln(35​)True
Check the solutions by plugging them into ex+e−xex−e−x​+4⋅ex+e−x2​=4
Remove the ones that don't agree with the equation.
Plug in x=0:True
e0+e−0e0−e−0​+4⋅e0+e−02​=4
e0+e−0e0−e−0​+4⋅e0+e−02​=4
e0+e−0e0−e−0​+4⋅e0+e−02​
Apply rule a0=1,a=0e0=1,e−0=1=1+11−1​+4⋅1+12​
1+11−1​=0
1+11−1​
Subtract the numbers: 1−1=0=1+10​
Add the numbers: 1+1=2=20​
Apply rule a0​=0,a=0=0
4⋅1+12​=4
4⋅1+12​
1+12​=1
1+12​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=4⋅1
Multiply the numbers: 4⋅1=4=4
=0+4
Add the numbers: 0+4=4=4
4=4
True
Plug in x=ln(35​):True
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​+4⋅eln(35​)+e−ln(35​)2​=4
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​+4⋅eln(35​)+e−ln(35​)2​=4
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​+4⋅eln(35​)+e−ln(35​)2​
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​=178​
eln(35​)+e−ln(35​)eln(35​)−e−ln(35​)​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​eln(35​)−e−ln(35​)​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​35​−53​​
Join 35​+53​:1534​
35​+53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​+159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525+9​
Add the numbers: 25+9=34=1534​
=1534​35​−53​​
Join 35​−53​:1516​
35​−53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​−159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525−9​
Subtract the numbers: 25−9=16=1516​
=1534​1516​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=15⋅3416⋅15​
Cancel the common factor: 15=3416​
Cancel the common factor: 2=178​
4⋅eln(35​)+e−ln(35​)2​=1760​
4⋅eln(35​)+e−ln(35​)2​
eln(35​)+e−ln(35​)2​=1715​
eln(35​)+e−ln(35​)2​
eln(35​)=35​
eln(35​)
Apply log rule: aloga​(b)=b=35​
e−ln(35​)=53​
e−ln(35​)
Apply exponent rule: abc=(ab)c=(eln(35​))−1
Apply log rule: aloga​(b)=beln(35​)=35​=(35​)−1
Apply exponent rule: a−1=a1​=35​1​
Apply the fraction rule: cb​1​=bc​=53​
=35​+53​2​
Join 35​+53​:1534​
35​+53​
Least Common Multiplier of 3,5:15
3,5
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Multiply each factor the greatest number of times it occurs in either 3 or 5=3⋅5
Multiply the numbers: 3⋅5=15=15
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 15
For 35​:multiply the denominator and numerator by 535​=3⋅55⋅5​=1525​
For 53​:multiply the denominator and numerator by 353​=5⋅33⋅3​=159​
=1525​+159​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1525+9​
Add the numbers: 25+9=34=1534​
=1534​2​
Apply the fraction rule: cb​a​=ba⋅c​=342⋅15​
Multiply the numbers: 2⋅15=30=3430​
Cancel the common factor: 2=1715​
=4⋅1715​
Multiply fractions: a⋅cb​=ca⋅b​=1715⋅4​
Multiply the numbers: 15⋅4=60=1760​
=178​+1760​
Simplify
178​+1760​
Apply rule ca​±cb​=ca±b​=178+60​
Add the numbers: 8+60=68=1768​
Divide the numbers: 1768​=4=4
=4
4=4
True
The solutions arex=0,x=ln(35​)
x=0,x=ln(35​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

36/49+cos^2(θ)=1sin(x)+3/2 =03cos^2(x)+10cos(x)+3=0-1=sin(k)(45)-494cos(A)=-241

Frequently Asked Questions (FAQ)

  • What is the general solution for tanh(x)+4sech(x)=4 ?

    The general solution for tanh(x)+4sech(x)=4 is x=0,x=ln(5/3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024