Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccosh(θ)=0.86806

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccosh(θ)=0.86806

Solution

NoSolutionforθ∈R
Solution steps
arccosh(θ)=0.86806
Subtract 0.86806 from both sidesarccosh(θ)−0.86806=0
Solve by substitution
arccosh(θ)−0.86806=0
Let: arccosh(θ)=uu−0.86806=0
u−0.86806=0:u=0.86806
u−0.86806=0
Move 0.86806to the right side
u−0.86806=0
Add 0.86806 to both sidesu−0.86806+0.86806=0+0.86806
Simplifyu=0.86806
u=0.86806
Substitute back u=arccosh(θ)arccosh(θ)=0.86806
arccosh(θ)=0.86806
Rewrite using trig identities
−0.86806+arccosh(θ)
Use the Hyperbolic identity: arccosh(x)=ln(x+x2−1​)=−0.86806+ln(θ+θ2−1​)
−0.86806+ln(−1+θ2​+θ)=0
Move 0.86806to the right side
−0.86806+ln(−1+θ2​+θ)=0
Add 0.86806 to both sides−0.86806+ln(−1+θ2​+θ)+0.86806=0+0.86806
Simplifyln(−1+θ2​+θ)=0.86806
ln(−1+θ2​+θ)=0.86806
Apply trig inverse properties
ln(−1+θ2​+θ)=0.86806
General solutions for ln(−1+θ2​+θ)=0.86806
Solve No Solution for θ∈R
Remove square roots
Subtract θ from both sides
Simplify−1+θ2​=Undefined
Square both sides:−1+θ2=Undefined2
(−1+θ2​)2=Undefined2
Expand (−1+θ2​)2:−1+θ2
(−1+θ2​)2
Apply radical rule: a​=a21​=((−1+θ2)21​)2
Apply exponent rule: (ab)c=abc=(−1+θ2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−1+θ2
−1+θ2=Undefined2
−1+θ2=Undefined2
−1+θ2=Undefined2
Solve −1+θ2=Undefined2:No Solution for θ∈R
−1+θ2=Undefined2
Move 1to the right side
−1+θ2=Undefined2
Add 1 to both sides−1+θ2+1=Undefined2+1
Simplifyθ2=Undefined2+1
θ2=Undefined2+1
ThereforeNoSolutionforθ∈R
NoSolutionforθ∈R
Solve No Solution for θ∈R
Remove square roots
Subtract θ from both sides
Simplify−1+θ2​=Undefined
Square both sides:−1+θ2=Undefined2
(−1+θ2​)2=Undefined2
Expand (−1+θ2​)2:−1+θ2
(−1+θ2​)2
Apply radical rule: a​=a21​=((−1+θ2)21​)2
Apply exponent rule: (ab)c=abc=(−1+θ2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−1+θ2
−1+θ2=Undefined2
−1+θ2=Undefined2
−1+θ2=Undefined2
Solve −1+θ2=Undefined2:No Solution for θ∈R
−1+θ2=Undefined2
Move 1to the right side
−1+θ2=Undefined2
Add 1 to both sides−1+θ2+1=Undefined2+1
Simplifyθ2=Undefined2+1
θ2=Undefined2+1
ThereforeNoSolutionforθ∈R
NoSolutionforθ∈R
NoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(t)= 5/13sin(x)=-(sqrt(7))/4-2sin(θ/2)=0cos^3(θ)+cos^2(θ)-cos(θ)-1=02sin^2(x)-sqrt(2sin(x))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arccosh(θ)=0.86806 ?

    The general solution for arccosh(θ)=0.86806 is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024