Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

2sin^2(x)-sqrt(2sin(x))=0

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

2sin2(x)−2sin(x)​=0

Lời Giải

x=2πn,x=π+2πn,x=0.91686…+2πn,x=π−0.91686…+2πn
+1
Độ
x=0∘+360∘n,x=180∘+360∘n,x=52.53268…∘+360∘n,x=127.46731…∘+360∘n
Các bước giải pháp
2sin2(x)−2sin(x)​=0
Giải quyết bằng cách thay thế
2sin2(x)−2sin(x)​=0
Cho: sin(x)=u2u2−2u​=0
2u2−2u​=0:u=0,u=2232​​
2u2−2u​=0
Loại bỏ căn bậc hai
2u2−2u​=0
Trừ 2u2 cho cả hai bên2u2−2u​−2u2=0−2u2
Rút gọn−2u​=−2u2
Bình phương cả hai vế:2u=4u4
2u2−2u​=0
(−2u​)2=(−2u2)2
Mở rộng (−2u​)2:2u
(−2u​)2
Áp dụng quy tắc số mũ: (−a)n=an,nếu n là chẵn(−2u​)2=(2u​)2=(2u​)2
Áp dụng quy tắc căn thức: a​=a21​=((2u)21​)2
Áp dụng quy tắc số mũ: (ab)c=abc=(2u)21​⋅2
21​⋅2=1
21​⋅2
Nhân phân số: a⋅cb​=ca⋅b​=21⋅2​
Triệt tiêu thừa số chung: 2=1
=2u
Mở rộng (−2u2)2:4u4
(−2u2)2
Áp dụng quy tắc số mũ: (−a)n=an,nếu n là chẵn(−2u2)2=(2u2)2=(2u2)2
Áp dụng quy tắc số mũ: (a⋅b)n=anbn=22(u2)2
(u2)2:u4
Áp dụng quy tắc số mũ: (ab)c=abc=u2⋅2
Nhân các số: 2⋅2=4=u4
=22u4
22=4=4u4
2u=4u4
2u=4u4
2u=4u4
Giải 2u=4u4:u=0,u=2232​​
2u=4u4
Di chuyển 4u4sang bên trái
2u=4u4
Trừ 4u4 cho cả hai bên2u−4u4=4u4−4u4
Rút gọn2u−4u4=0
2u−4u4=0
Hệ số
2u−4u4
Đưa số hạng chung ra ngoài ngoặc −2u:−2u(2u3−1)
−4u4+2u
Áp dụng quy tắc số mũ: ab+c=abacu4=u3u=−4u3u+2u
Viết lại 4 dưới dạng 2⋅2=−2⋅2u3u+2u
Đưa số hạng chung ra ngoài ngoặc −2u=−2u(2u3−1)
=−2u(2u3−1)
Hệ số
2u3−1
Viết lại 2u3−1 dưới dạng
2u3−1
Áp dụng quy tắc căn thức: a=(a​)2
Viết lại 1 dưới dạng 13
Áp dụng quy tắc số mũ: ambm=(ab)m
Áp Dụng Công Thức Hiệu Của Các Lũy Thừa Bậc Ba: x3−y3=(x−y)(x2+xy+y2)
Tinh chỉnh
Sử dụng Nguyên tắc Hệ số 0: Nếu ab=0thì a=0or b=0
Giải
Di chuyển 1sang vế phải
Thêm 1 vào cả hai bên
Rút gọn
Chia cả hai vế cho
Chia cả hai vế cho
Rút gọn
Rút gọn
Triệt tiêu thừa số chung: =u
Rút gọn
Nhân với liên hợp của 232​232​​
1⋅232​=232​
Áp dụng quy tắc số mũ: ab⋅ac=ab+c=232​+31​
Hợp 32​+31​:1
32​+31​
Vì các mẫu số bằng nhau, cộng các phân số: ca​±cb​=ca±b​=32+1​
Thêm các số: 2+1=3=33​
Áp dụng quy tắc aa​=1=1
=21
Áp dụng quy tắc a1=a=2
=2232​​
u=2232​​
u=2232​​
u=2232​​
Giải Không có nghiệm cho u∈R
Biệt số
Đối với phương trình bậc hai có dạng ax2+bx+c=0 biệt số là b2−4acVới
Mở rộng
Áp dụng quy tắc căn thức: =(231​)2
Áp dụng quy tắc số mũ: (ab)c=abc=231​⋅2
31​⋅2=32​
31​⋅2
Nhân phân số: a⋅cb​=ca⋅b​=31⋅2​
Nhân các số: 1⋅2=2=32​
=232​
4⋅232​⋅1=4⋅232​
4⋅232​⋅1
Nhân các số: 4⋅1=4=4⋅232​
=232​−4⋅232​
Thêm các phần tử tương tự: 232​−4⋅232​=−3⋅232​=−3⋅232​
−3⋅232​
Biệt số không thể âm cho u∈R
Giải pháp làKho^ngcoˊnghiệmchou∈R
Các lời giải làu=0,u=2232​​
u=0,u=2232​​
Xác minh lời giải:u=0Đúng,u=2232​​Đúng
Kiểm tra các lời giải bằng cách thay chúng vào2u2−2u​=0
Loại bỏ những lời giải không đúng với phương trình.
Thay u=0:Đúng
2⋅02−2⋅0​=0
2⋅02−2⋅0​=0
2⋅02−2⋅0​
Áp dụng quy tắc 0a=002=0=2⋅0−2⋅0​
2⋅0=0
2⋅0
Áp dụng quy tắc 0⋅a=0=0
2⋅0​=0
2⋅0​
Áp dụng quy tắc 0⋅a=0=0​
Áp dụng quy tắc 0​=0=0
=0−0
Trừ các số: 0−0=0=0
0=0
Đuˊng
Thay u=2232​​:Đúng
2(2232​​)2−2(2232​​)​=0
2(2232​​)2−2(2232​​)​=231​−232​​
2(2232​​)2−2(2232​​)​
Xóa dấu ngoặc đơn: (a)=a=2(2232​​)2−2⋅2232​​​
2(2232​​)2=231​
2(2232​​)2
(2232​​)2=232​1​
(2232​​)2
2232​​=231​1​
2232​​
Áp dụng quy tắc số mũ: xbxa​=xb−a1​2232​​=21−32​1​=21−32​1​
Trừ các số: 1−32​=31​=231​1​
=(231​1​)2
Áp dụng quy tắc số mũ: (ba​)c=bcac​=(231​)212​
(231​)2:232​
Áp dụng quy tắc số mũ: (ab)c=abc=231​⋅2
31​⋅2=32​
31​⋅2
Nhân phân số: a⋅cb​=ca⋅b​=31⋅2​
Nhân các số: 1⋅2=2=32​
=232​
=232​12​
Áp dụng quy tắc 1a=112=1=232​1​
=2⋅232​1​
Nhân phân số: a⋅cb​=ca⋅b​=232​1⋅2​
Nhân các số: 1⋅2=2=232​2​
Áp dụng quy tắc số mũ: xbxa​=xa−b232​2​=21−32​=21−32​
Trừ các số: 1−32​=31​=231​
2⋅2232​​​=232​​
2⋅2232​​​
Nhân 2⋅2232​​:232​
2⋅2232​​
Nhân phân số: a⋅cb​=ca⋅b​=2232​⋅2​
Triệt tiêu thừa số chung: 2=232​
=232​​
=231​−232​​
231​−232​​=0
Đuˊng
Các lời giải làu=0,u=2232​​
Thay thế lại u=sin(x)sin(x)=0,sin(x)=2232​​
sin(x)=0,sin(x)=2232​​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
Các lời giải chung cho sin(x)=0
sin(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Giải x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=2232​​:x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
sin(x)=2232​​
Áp dụng tính chất nghịch đảo lượng giác
sin(x)=2232​​
Các lời giải chung cho sin(x)=2232​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
Kết hợp tất cả các cách giảix=2πn,x=π+2πn,x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
Hiển thị các lời giải ở dạng thập phânx=2πn,x=π+2πn,x=0.91686…+2πn,x=π−0.91686…+2πn

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

9sin^2(x)-6sin(x)+1=0cos(a)+1=4cos(a)+16cos(x)+3sin(x)=5(2sin(x)-1)cos(x)=0sin(2x)+cos(x)=0,x<= 2pi,0
Công cụ học tậpTrình giải toán AIBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng ChromeSymbolab Math Solver API
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưĐiều KhoảnChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024