Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sec^2(x/2)-4sec(x/2)-4=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sec2(2x​)−4sec(2x​)−4=0

Solution

x=32π​+4πn,x=310π​+4πn
+1
Degrees
x=120∘+720∘n,x=600∘+720∘n
Solution steps
3sec2(2x​)−4sec(2x​)−4=0
Solve by substitution
3sec2(2x​)−4sec(2x​)−4=0
Let: sec(2x​)=u3u2−4u−4=0
3u2−4u−4=0:u=2,u=−32​
3u2−4u−4=0
Solve with the quadratic formula
3u2−4u−4=0
Quadratic Equation Formula:
For a=3,b=−4,c=−4u1,2​=2⋅3−(−4)±(−4)2−4⋅3(−4)​​
u1,2​=2⋅3−(−4)±(−4)2−4⋅3(−4)​​
(−4)2−4⋅3(−4)​=8
(−4)2−4⋅3(−4)​
Apply rule −(−a)=a=(−4)2+4⋅3⋅4​
Apply exponent rule: (−a)n=an,if n is even(−4)2=42=42+4⋅3⋅4​
Multiply the numbers: 4⋅3⋅4=48=42+48​
42=16=16+48​
Add the numbers: 16+48=64=64​
Factor the number: 64=82=82​
Apply radical rule: 82​=8=8
u1,2​=2⋅3−(−4)±8​
Separate the solutionsu1​=2⋅3−(−4)+8​,u2​=2⋅3−(−4)−8​
u=2⋅3−(−4)+8​:2
2⋅3−(−4)+8​
Apply rule −(−a)=a=2⋅34+8​
Add the numbers: 4+8=12=2⋅312​
Multiply the numbers: 2⋅3=6=612​
Divide the numbers: 612​=2=2
u=2⋅3−(−4)−8​:−32​
2⋅3−(−4)−8​
Apply rule −(−a)=a=2⋅34−8​
Subtract the numbers: 4−8=−4=2⋅3−4​
Multiply the numbers: 2⋅3=6=6−4​
Apply the fraction rule: b−a​=−ba​=−64​
Cancel the common factor: 2=−32​
The solutions to the quadratic equation are:u=2,u=−32​
Substitute back u=sec(2x​)sec(2x​)=2,sec(2x​)=−32​
sec(2x​)=2,sec(2x​)=−32​
sec(2x​)=2:x=32π​+4πn,x=310π​+4πn
sec(2x​)=2
General solutions for sec(2x​)=2
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
2x​=3π​+2πn,2x​=35π​+2πn
2x​=3π​+2πn,2x​=35π​+2πn
Solve 2x​=3π​+2πn:x=32π​+4πn
2x​=3π​+2πn
Multiply both sides by 2
2x​=3π​+2πn
Multiply both sides by 222x​=2⋅3π​+2⋅2πn
Simplify
22x​=2⋅3π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅3π​+2⋅2πn:32π​+4πn
2⋅3π​+2⋅2πn
Multiply 2⋅3π​:32π​
2⋅3π​
Multiply fractions: a⋅cb​=ca⋅b​=3π2​
=32π​+2⋅2πn
Multiply the numbers: 2⋅2=4=32π​+4πn
x=32π​+4πn
x=32π​+4πn
x=32π​+4πn
Solve 2x​=35π​+2πn:x=310π​+4πn
2x​=35π​+2πn
Multiply both sides by 2
2x​=35π​+2πn
Multiply both sides by 222x​=2⋅35π​+2⋅2πn
Simplify
22x​=2⋅35π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅35π​+2⋅2πn:310π​+4πn
2⋅35π​+2⋅2πn
2⋅35π​=310π​
2⋅35π​
Multiply fractions: a⋅cb​=ca⋅b​=35π2​
Multiply the numbers: 5⋅2=10=310π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=310π​+4πn
x=310π​+4πn
x=310π​+4πn
x=310π​+4πn
x=32π​+4πn,x=310π​+4πn
sec(2x​)=−32​:No Solution
sec(2x​)=−32​
sec(x)≤−1orsec(x)≥1NoSolution
Combine all the solutionsx=32π​+4πn,x=310π​+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)= 3/(10cos(x)),0<x<902cos^2(x)-sqrt(3)cos(x)=0,0,2pi2cos^2(x)-5sin(x)=42cos(2θ)-7cos(θ)+2=-4cos(θ)sin(5x-15)=sin(5*x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sec^2(x/2)-4sec(x/2)-4=0 ?

    The general solution for 3sec^2(x/2)-4sec(x/2)-4=0 is x=(2pi)/3+4pin,x=(10pi)/3+4pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024