Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos(x))/(csc(x))+(sin(x))/(sec(x))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(x)cos(x)​+sec(x)sin(x)​=1

Solution

x=4π​+πn
+1
Degrees
x=45∘+180∘n
Solution steps
csc(x)cos(x)​+sec(x)sin(x)​=1
Subtract 1 from both sidescsc(x)cos(x)​+sec(x)sin(x)​−1=0
Simplify csc(x)cos(x)​+sec(x)sin(x)​−1:csc(x)sec(x)cos(x)sec(x)+sin(x)csc(x)−csc(x)sec(x)​
csc(x)cos(x)​+sec(x)sin(x)​−1
Convert element to fraction: 1=11​=csc(x)cos(x)​+sec(x)sin(x)​−11​
Least Common Multiplier of csc(x),sec(x),1:csc(x)sec(x)
csc(x),sec(x),1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=csc(x)sec(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM csc(x)sec(x)
For csc(x)cos(x)​:multiply the denominator and numerator by sec(x)csc(x)cos(x)​=csc(x)sec(x)cos(x)sec(x)​
For sec(x)sin(x)​:multiply the denominator and numerator by csc(x)sec(x)sin(x)​=sec(x)csc(x)sin(x)csc(x)​
For 11​:multiply the denominator and numerator by csc(x)sec(x)11​=1⋅csc(x)sec(x)1⋅csc(x)sec(x)​=csc(x)sec(x)csc(x)sec(x)​
=csc(x)sec(x)cos(x)sec(x)​+sec(x)csc(x)sin(x)csc(x)​−csc(x)sec(x)csc(x)sec(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=csc(x)sec(x)cos(x)sec(x)+sin(x)csc(x)−csc(x)sec(x)​
csc(x)sec(x)cos(x)sec(x)+sin(x)csc(x)−csc(x)sec(x)​=0
g(x)f(x)​=0⇒f(x)=0cos(x)sec(x)+sin(x)csc(x)−csc(x)sec(x)=0
Express with sin, cos
cos(x)sec(x)−csc(x)sec(x)+csc(x)sin(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=cos(x)cos(x)1​−csc(x)cos(x)1​+csc(x)sin(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=cos(x)cos(x)1​−sin(x)1​⋅cos(x)1​+sin(x)1​sin(x)
Simplify cos(x)cos(x)1​−sin(x)1​⋅cos(x)1​+sin(x)1​sin(x):sin(x)cos(x)−1+2sin(x)cos(x)​
cos(x)cos(x)1​−sin(x)1​⋅cos(x)1​+sin(x)1​sin(x)
cos(x)cos(x)1​=1
cos(x)cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅cos(x)​
Cancel the common factor: cos(x)=1
sin(x)1​⋅cos(x)1​=sin(x)cos(x)1​
sin(x)1​⋅cos(x)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(x)cos(x)1⋅1​
Multiply the numbers: 1⋅1=1=sin(x)cos(x)1​
sin(x)1​sin(x)=1
sin(x)1​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1⋅sin(x)​
Cancel the common factor: sin(x)=1
=1−sin(x)cos(x)1​+1
Group like terms=−sin(x)cos(x)1​+1+1
Add the numbers: 1+1=2=−sin(x)cos(x)1​+2
Convert element to fraction: 2=sin(x)cos(x)2sin(x)cos(x)​=−sin(x)cos(x)1​+sin(x)cos(x)2sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)−1+2sin(x)cos(x)​
=sin(x)cos(x)−1+2sin(x)cos(x)​
cos(x)sin(x)−1+2cos(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−1+2cos(x)sin(x)=0
Rewrite using trig identities
−1+2cos(x)sin(x)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=−1+sin(2x)
−1+sin(2x)=0
Move 1to the right side
−1+sin(2x)=0
Add 1 to both sides−1+sin(2x)+1=0+1
Simplifysin(2x)=1
sin(2x)=1
General solutions for sin(2x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=2π​+2πn
2x=2π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(θ)=-8solvefor t,0=(1.8)cos(2pift)2cot(x)cos(x)+2cos(x)=cot(x)+1tan(θ)-7=-12cot(θ)4cos^2(3x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for (cos(x))/(csc(x))+(sin(x))/(sec(x))=1 ?

    The general solution for (cos(x))/(csc(x))+(sin(x))/(sec(x))=1 is x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024