Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x))/(1+cos(x))=3cot(x/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+cos(x)sin(x)​=3cot(2x​)

Solution

x=π+4πn,x=3π+4πn,x=32π​+2πn,x=34π​+2πn
+1
Degrees
x=180∘+720∘n,x=540∘+720∘n,x=120∘+360∘n,x=240∘+360∘n
Solution steps
1+cos(x)sin(x)​=3cot(2x​)
Subtract 3cot(2x​) from both sides1+cos(x)sin(x)​−3cot(2x​)=0
Simplify 1+cos(x)sin(x)​−3cot(2x​):1+cos(x)sin(x)−3cot(2x​)(1+cos(x))​
1+cos(x)sin(x)​−3cot(2x​)
Convert element to fraction: 3cot(2x​)=1+cos(x)3cot(2x​)(1+cos(x))​=1+cos(x)sin(x)​−1+cos(x)3cot(2x​)(1+cos(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1+cos(x)sin(x)−3cot(2x​)(1+cos(x))​
1+cos(x)sin(x)−3cot(2x​)(1+cos(x))​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−3cot(2x​)(1+cos(x))=0
Let: u=2x​sin(2u)−3cot(u)(1+cos(2u))=0
Express with sin, cos
sin(2u)−(1+cos(2u))⋅3cot(u)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(2u)−(1+cos(2u))⋅3⋅sin(u)cos(u)​
Simplify sin(2u)−(1+cos(2u))⋅3⋅sin(u)cos(u)​:sin(u)sin(2u)sin(u)−3cos(u)(1+cos(2u))​
sin(2u)−(1+cos(2u))⋅3⋅sin(u)cos(u)​
Multiply (1+cos(2u))⋅3⋅sin(u)cos(u)​:sin(u)3cos(u)(cos(2u)+1)​
(1+cos(2u))⋅3⋅sin(u)cos(u)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(u)cos(u)(1+cos(2u))⋅3​
=sin(2u)−sin(u)3cos(u)(cos(2u)+1)​
Convert element to fraction: sin(2u)=sin(u)sin(2u)sin(u)​=sin(u)sin(2u)sin(u)​−sin(u)cos(u)(1+cos(2u))⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(u)sin(2u)sin(u)−cos(u)(1+cos(2u))⋅3​
=sin(u)sin(2u)sin(u)−3cos(u)(1+cos(2u))​
sin(u)sin(2u)sin(u)−(1+cos(2u))⋅3cos(u)​=0
g(x)f(x)​=0⇒f(x)=0sin(2u)sin(u)−(1+cos(2u))⋅3cos(u)=0
Rewrite using trig identities
sin(2u)sin(u)−(1+cos(2u))⋅3cos(u)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(u)cos(u)sin(u)−3cos(u)(1+cos(2u))
2sin(u)cos(u)sin(u)=2sin2(u)cos(u)
2sin(u)cos(u)sin(u)
Apply exponent rule: ab⋅ac=ab+csin(u)sin(u)=sin1+1(u)=2cos(u)sin1+1(u)
Add the numbers: 1+1=2=2cos(u)sin2(u)
=2sin2(u)cos(u)−3cos(u)(1+cos(2u))
−(1+cos(2u))⋅3cos(u)+2cos(u)sin2(u)=0
Factor −(1+cos(2u))⋅3cos(u)+2cos(u)sin2(u):cos(u)(−3(1+cos(2u))+2sin2(u))
−(1+cos(2u))⋅3cos(u)+2cos(u)sin2(u)
Factor out common term cos(u)=cos(u)(−3(1+cos(2u))+2sin2(u))
cos(u)(−3(1+cos(2u))+2sin2(u))=0
Solving each part separatelycos(u)=0or−3(1+cos(2u))+2sin2(u)=0
cos(u)=0:u=2π​+2πn,u=23π​+2πn
cos(u)=0
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
−3(1+cos(2u))+2sin2(u)=0:u=3π​+πn,u=32π​+πn
−3(1+cos(2u))+2sin2(u)=0
Rewrite using trig identities
−(1+cos(2u))⋅3+2sin2(u)
Use the Double Angle identity: 1−2sin2(x)=cos(2x)−2sin2(x)=cos(2x)−1=−(cos(2u)−1)−3(1+cos(2u))
Simplify −(cos(2u)−1)−3(1+cos(2u)):−4cos(2u)−2
−(cos(2u)−1)−3(1+cos(2u))
−(cos(2u)−1):−cos(2u)+1
−(cos(2u)−1)
Distribute parentheses=−(cos(2u))−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−cos(2u)+1
=−cos(2u)+1−3(1+cos(2u))
Expand −3(1+cos(2u)):−3−3cos(2u)
−3(1+cos(2u))
Apply the distributive law: a(b+c)=ab+aca=−3,b=1,c=cos(2u)=−3⋅1+(−3)cos(2u)
Apply minus-plus rules+(−a)=−a=−3⋅1−3cos(2u)
Multiply the numbers: 3⋅1=3=−3−3cos(2u)
=−cos(2u)+1−3−3cos(2u)
Simplify −cos(2u)+1−3−3cos(2u):−4cos(2u)−2
−cos(2u)+1−3−3cos(2u)
Group like terms=−cos(2u)−3cos(2u)+1−3
Add similar elements: −cos(2u)−3cos(2u)=−4cos(2u)=−4cos(2u)+1−3
Add/Subtract the numbers: 1−3=−2=−4cos(2u)−2
=−4cos(2u)−2
=−4cos(2u)−2
−2−4cos(2u)=0
Move 2to the right side
−2−4cos(2u)=0
Add 2 to both sides−2−4cos(2u)+2=0+2
Simplify−4cos(2u)=2
−4cos(2u)=2
Divide both sides by −4
−4cos(2u)=2
Divide both sides by −4−4−4cos(2u)​=−42​
Simplify
−4−4cos(2u)​=−42​
Simplify −4−4cos(2u)​:cos(2u)
−4−4cos(2u)​
Apply the fraction rule: −b−a​=ba​=44cos(2u)​
Divide the numbers: 44​=1=cos(2u)
Simplify −42​:−21​
−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
cos(2u)=−21​
cos(2u)=−21​
cos(2u)=−21​
General solutions for cos(2u)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2u=32π​+2πn,2u=34π​+2πn
2u=32π​+2πn,2u=34π​+2πn
Solve 2u=32π​+2πn:u=3π​+πn
2u=32π​+2πn
Divide both sides by 2
2u=32π​+2πn
Divide both sides by 222u​=232π​​+22πn​
Simplify
22u​=232π​​+22πn​
Simplify 22u​:u
22u​
Divide the numbers: 22​=1=u
Simplify 232π​​+22πn​:3π​+πn
232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=3π​+πn
u=3π​+πn
u=3π​+πn
u=3π​+πn
Solve 2u=34π​+2πn:u=32π​+πn
2u=34π​+2πn
Divide both sides by 2
2u=34π​+2πn
Divide both sides by 222u​=234π​​+22πn​
Simplify
22u​=234π​​+22πn​
Simplify 22u​:u
22u​
Divide the numbers: 22​=1=u
Simplify 234π​​+22πn​:32π​+πn
234π​​+22πn​
234π​​=32π​
234π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π​
Multiply the numbers: 3⋅2=6=64π​
Cancel the common factor: 2=32π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=32π​+πn
u=32π​+πn
u=32π​+πn
u=32π​+πn
u=3π​+πn,u=32π​+πn
Combine all the solutionsu=2π​+2πn,u=23π​+2πn,u=3π​+πn,u=32π​+πn
Substitute back u=2x​
2x​=2π​+2πn:x=π+4πn
2x​=2π​+2πn
Multiply both sides by 2
2x​=2π​+2πn
Multiply both sides by 222x​=2⋅2π​+2⋅2πn
Simplify
22x​=2⋅2π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
x=π+4πn
x=π+4πn
x=π+4πn
2x​=23π​+2πn:x=3π+4πn
2x​=23π​+2πn
Multiply both sides by 2
2x​=23π​+2πn
Multiply both sides by 222x​=2⋅23π​+2⋅2πn
Simplify
22x​=2⋅23π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
x=3π+4πn
x=3π+4πn
x=3π+4πn
2x​=3π​+πn:x=32π​+2πn
2x​=3π​+πn
Multiply both sides by 2
2x​=3π​+πn
Multiply both sides by 222x​=2⋅3π​+2πn
Simplify
22x​=2⋅3π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅3π​+2πn:32π​+2πn
2⋅3π​+2πn
Multiply 2⋅3π​:32π​
2⋅3π​
Multiply fractions: a⋅cb​=ca⋅b​=3π2​
=32π​+2πn
x=32π​+2πn
x=32π​+2πn
x=32π​+2πn
2x​=32π​+πn:x=34π​+2πn
2x​=32π​+πn
Multiply both sides by 2
2x​=32π​+πn
Multiply both sides by 222x​=2⋅32π​+2πn
Simplify
22x​=2⋅32π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅32π​+2πn:34π​+2πn
2⋅32π​+2πn
2⋅32π​=34π​
2⋅32π​
Multiply fractions: a⋅cb​=ca⋅b​=32π2​
Multiply the numbers: 2⋅2=4=34π​
=34π​+2πn
x=34π​+2πn
x=34π​+2πn
x=34π​+2πn
x=π+4πn,x=3π+4πn,x=32π​+2πn,x=34π​+2πn
Since the equation is undefined for:π+4πn,3π+4πnx=π+4πn,x=3π+4πn,x=32π​+2πn,x=34π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x)=(sqrt(3))/2 ,0<= x<= 3603sin^2(x)+8cos^2(x)=6tan(θ)= 2/84tan^2(x)+7tan(x)-4=0,cot(2x)11.75=5sin((pit)/6-(7pi)/6)+8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024