Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

25=-20cos((2pi)/(365)(x+10))+25

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

25=−20cos(3652π​(x+10))+25

Solution

x=365n+4325​,x=365n+41055​
+1
Degrees
x=4655.28208…∘+20912.95952…∘n,x=15111.76184…∘+20912.95952…∘n
Solution steps
25=−20cos(3652π​(x+10))+25
Switch sides−20cos(3652π​(x+10))+25=25
Subtract 25 from both sides−20cos(3652π​(x+10))+25−25=25−25
Simplify−20cos(3652π​(x+10))=0
Divide both sides by −20
−20cos(3652π​(x+10))=0
Divide both sides by −20−20−20cos(3652π​(x+10))​=−200​
Simplifycos(3652π​(x+10))=0
cos(3652π​(x+10))=0
General solutions for cos(3652π​(x+10))=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3652π​(x+10)=2π​+2πn,3652π​(x+10)=23π​+2πn
3652π​(x+10)=2π​+2πn,3652π​(x+10)=23π​+2πn
Solve 3652π​(x+10)=2π​+2πn:x=365n+4325​
3652π​(x+10)=2π​+2πn
Multiply both sides by 365
3652π​(x+10)=2π​+2πn
Multiply both sides by 365365⋅3652π​(x+10)=365⋅2π​+365⋅2πn
Simplify
365⋅3652π​(x+10)=365⋅2π​+365⋅2πn
Simplify 365⋅3652π​(x+10):2π(x+10)
365⋅3652π​(x+10)
Multiply fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+10)
Cancel the common factor: 365=(x+10)⋅2π
Simplify 365⋅2π​+365⋅2πn:2365π​+730πn
365⋅2π​+365⋅2πn
Multiply 365⋅2π​:2365π​
365⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π365​
=2365π​+365⋅2πn
Multiply the numbers: 365⋅2=730=2365π​+730πn
2π(x+10)=2365π​+730πn
2π(x+10)=2365π​+730πn
2π(x+10)=2365π​+730πn
Divide both sides by 2π
2π(x+10)=2365π​+730πn
Divide both sides by 2π2π2π(x+10)​=2π2365π​​+2π730πn​
Simplify
2π2π(x+10)​=2π2365π​​+2π730πn​
Simplify 2π2π(x+10)​:x+10
2π2π(x+10)​
Divide the numbers: 22​=1=ππ(x+10)​
Cancel the common factor: π=x+10
Simplify 2π2365π​​+2π730πn​:4365​+365n
2π2365π​​+2π730πn​
2π2365π​​=4365​
2π2365π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π365π​
Multiply the numbers: 2⋅2=4=4π365π​
Cancel the common factor: π=4365​
2π730πn​=365n
2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Divide the numbers: 2730​=365=π365πn​
Cancel the common factor: π=365n
=365n
=4365​+365n
x+10=4365​+365n
x+10=4365​+365n
x+10=4365​+365n
Move 10to the right side
x+10=4365​+365n
Subtract 10 from both sidesx+10−10=4365​+365n−10
Simplify
x+10−10=4365​+365n−10
Simplify x+10−10:x
x+10−10
Add similar elements: 10−10=0
=x
Simplify 4365​+365n−10:365n+4325​
4365​+365n−10
Combine the fractions −10+4365​:4325​
−10+4365​
Convert element to fraction: 10=410⋅4​=−410⋅4​+4365​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−10⋅4+365​
−10⋅4+365=325
−10⋅4+365
Multiply the numbers: 10⋅4=40=−40+365
Add/Subtract the numbers: −40+365=325=325
=4325​
=365n+4325​
x=365n+4325​
x=365n+4325​
x=365n+4325​
Solve 3652π​(x+10)=23π​+2πn:x=365n+41055​
3652π​(x+10)=23π​+2πn
Multiply both sides by 365
3652π​(x+10)=23π​+2πn
Multiply both sides by 365365⋅3652π​(x+10)=365⋅23π​+365⋅2πn
Simplify
365⋅3652π​(x+10)=365⋅23π​+365⋅2πn
Simplify 365⋅3652π​(x+10):2π(x+10)
365⋅3652π​(x+10)
Multiply fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+10)
Cancel the common factor: 365=(x+10)⋅2π
Simplify 365⋅23π​+365⋅2πn:21095π​+730πn
365⋅23π​+365⋅2πn
365⋅23π​=21095π​
365⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π365​
Multiply the numbers: 3⋅365=1095=21095π​
365⋅2πn=730πn
365⋅2πn
Multiply the numbers: 365⋅2=730=730πn
=21095π​+730πn
2π(x+10)=21095π​+730πn
2π(x+10)=21095π​+730πn
2π(x+10)=21095π​+730πn
Divide both sides by 2π
2π(x+10)=21095π​+730πn
Divide both sides by 2π2π2π(x+10)​=2π21095π​​+2π730πn​
Simplify
2π2π(x+10)​=2π21095π​​+2π730πn​
Simplify 2π2π(x+10)​:x+10
2π2π(x+10)​
Divide the numbers: 22​=1=ππ(x+10)​
Cancel the common factor: π=x+10
Simplify 2π21095π​​+2π730πn​:41095​+365n
2π21095π​​+2π730πn​
2π21095π​​=41095​
2π21095π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π1095π​
Multiply the numbers: 2⋅2=4=4π1095π​
Cancel the common factor: π=41095​
2π730πn​=365n
2π730πn​
Cancel 2π730πn​:365n
2π730πn​
Divide the numbers: 2730​=365=π365πn​
Cancel the common factor: π=365n
=365n
=41095​+365n
x+10=41095​+365n
x+10=41095​+365n
x+10=41095​+365n
Move 10to the right side
x+10=41095​+365n
Subtract 10 from both sidesx+10−10=41095​+365n−10
Simplify
x+10−10=41095​+365n−10
Simplify x+10−10:x
x+10−10
Add similar elements: 10−10=0
=x
Simplify 41095​+365n−10:365n+41055​
41095​+365n−10
Combine the fractions −10+41095​:41055​
−10+41095​
Convert element to fraction: 10=410⋅4​=−410⋅4​+41095​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−10⋅4+1095​
−10⋅4+1095=1055
−10⋅4+1095
Multiply the numbers: 10⋅4=40=−40+1095
Add/Subtract the numbers: −40+1095=1055=1055
=41055​
=365n+41055​
x=365n+41055​
x=365n+41055​
x=365n+41055​
x=365n+4325​,x=365n+41055​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)-cos(x)-1/(sqrt(2))=0cos^2(θ)= 49/64sec^2(θ)=1-tan(θ)cos^2(x)=-0.267sin(x-4)=cos(9x+4)

Frequently Asked Questions (FAQ)

  • What is the general solution for 25=-20cos((2pi)/(365)(x+10))+25 ?

    The general solution for 25=-20cos((2pi)/(365)(x+10))+25 is x=365n+325/4 ,x=365n+1055/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024