Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor A,y=-6cos(A)-2sin^2(A)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

A=arccos(23+2y+13​​)+2πn,A=−arccos(23+2y+13​​)+2πn,A=arccos(23−2y+13​​)+2πn,A=−arccos(23−2y+13​​)+2πn
Solution steps
y=−6cos(A)−2sin2(A)
Switch sides−6cos(A)−2sin2(A)=y
Subtract y from both sides−6cos(A)−2sin2(A)−y=0
Rewrite using trig identities
−y−2sin2(A)−6cos(A)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−y−2(1−cos2(A))−6cos(A)
−y−(1−cos2(A))⋅2−6cos(A)=0
Solve by substitution
−y−(1−cos2(A))⋅2−6cos(A)=0
Let: cos(A)=u−y−(1−u2)⋅2−6u=0
−y−(1−u2)⋅2−6u=0:u=23+2y+13​​,u=23−2y+13​​
−y−(1−u2)⋅2−6u=0
Expand −y−(1−u2)⋅2−6u:−y−2+2u2−6u
−y−(1−u2)⋅2−6u
=−y−2(1−u2)−6u
Expand −2(1−u2):−2+2u2
−2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=u2=−2⋅1−(−2)u2
Apply minus-plus rules−(−a)=a=−2⋅1+2u2
Multiply the numbers: 2⋅1=2=−2+2u2
=−y−2+2u2−6u
−y−2+2u2−6u=0
Write in the standard form ax2+bx+c=02u2−6u−y−2=0
Solve with the quadratic formula
2u2−6u−y−2=0
Quadratic Equation Formula:
For a=2,b=−6,c=−y−2u1,2​=2⋅2−(−6)±(−6)2−4⋅2(−y−2)​​
u1,2​=2⋅2−(−6)±(−6)2−4⋅2(−y−2)​​
Simplify (−6)2−4⋅2(−y−2)​:22y+13​
(−6)2−4⋅2(−y−2)​
Apply exponent rule: (−a)n=an,if n is even(−6)2=62=62−4⋅2(−y−2)​
Multiply the numbers: 4⋅2=8=62−8(−y−2)​
Factor 62−8(−y−2):4(2y+13)
62−8(−y−2)
6=2⋅3=(2⋅3)2−23(−y−2)
Apply exponent rule: (ab)c=acbc=22⋅32−23(−y−2)
Rewrite as=4⋅9−4⋅2(−2−y)
Factor out common term 4=4(9−2(−2−y))
Expand −2(−y−2)+9:2y+13
9−2(−2−y)
Expand −2(−2−y):4+2y
−2(−2−y)
Apply the distributive law: a(b−c)=ab−aca=−2,b=−2,c=y=−2(−2)−(−2)y
Apply minus-plus rules−(−a)=a=2⋅2+2y
Multiply the numbers: 2⋅2=4=4+2y
=9+4+2y
Add the numbers: 9+4=13=2y+13
=4(2y+13)
=4(2y+13)​
Apply radical rule: assuming a≥0,b≥0=4​2y+13​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22y+13​
u1,2​=2⋅2−(−6)±22y+13​​
Separate the solutionsu1​=2⋅2−(−6)+22y+13​​,u2​=2⋅2−(−6)−22y+13​​
u=2⋅2−(−6)+22y+13​​:23+2y+13​​
2⋅2−(−6)+22y+13​​
Apply rule −(−a)=a=2⋅26+22y+13​​
Multiply the numbers: 2⋅2=4=46+22y+13​​
Factor 6+22y+13​:2(3+13+2y​)
6+22y+13​
Rewrite as=2⋅3+213+2y​
Factor out common term 2=2(3+13+2y​)
=42(3+13+2y​)​
Cancel the common factor: 2=23+2y+13​​
u=2⋅2−(−6)−22y+13​​:23−2y+13​​
2⋅2−(−6)−22y+13​​
Apply rule −(−a)=a=2⋅26−22y+13​​
Multiply the numbers: 2⋅2=4=46−22y+13​​
Factor 6−22y+13​:2(3−13+2y​)
6−22y+13​
Rewrite as=2⋅3−213+2y​
Factor out common term 2=2(3−13+2y​)
=42(3−13+2y​)​
Cancel the common factor: 2=23−2y+13​​
The solutions to the quadratic equation are:u=23+2y+13​​,u=23−2y+13​​
Substitute back u=cos(A)cos(A)=23+2y+13​​,cos(A)=23−2y+13​​
cos(A)=23+2y+13​​,cos(A)=23−2y+13​​
cos(A)=23+2y+13​​:A=arccos(23+2y+13​​)+2πn,A=−arccos(23+2y+13​​)+2πn
cos(A)=23+2y+13​​
Apply trig inverse properties
cos(A)=23+2y+13​​
General solutions for cos(A)=23+2y+13​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnA=arccos(23+2y+13​​)+2πn,A=−arccos(23+2y+13​​)+2πn
A=arccos(23+2y+13​​)+2πn,A=−arccos(23+2y+13​​)+2πn
cos(A)=23−2y+13​​:A=arccos(23−2y+13​​)+2πn,A=−arccos(23−2y+13​​)+2πn
cos(A)=23−2y+13​​
Apply trig inverse properties
cos(A)=23−2y+13​​
General solutions for cos(A)=23−2y+13​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnA=arccos(23−2y+13​​)+2πn,A=−arccos(23−2y+13​​)+2πn
A=arccos(23−2y+13​​)+2πn,A=−arccos(23−2y+13​​)+2πn
Combine all the solutionsA=arccos(23+2y+13​​)+2πn,A=−arccos(23+2y+13​​)+2πn,A=arccos(23−2y+13​​)+2πn,A=−arccos(23−2y+13​​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos(x^2)-1=0sin^4(x)=cos^4(x)10.5^2=6.7^2+7.8^2-2*6.7*7.8*cos(x)3sinh(x)-cosh(x)=1tan(45+x/3)=0.58

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor A,y=-6cos(A)-2sin^2(A) ?

    The general solution for solvefor A,y=-6cos(A)-2sin^2(A) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024