Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)=cos^4(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)=cos4(x)

Solution

x=4π​+πn,x=43π​+πn
+1
Degrees
x=45∘+180∘n,x=135∘+180∘n
Solution steps
sin4(x)=cos4(x)
Subtract cos4(x) from both sidessin4(x)−cos4(x)=0
Factor sin4(x)−cos4(x):(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))
sin4(x)−cos4(x)
Rewrite sin4(x)−cos4(x) as (sin2(x))2−(cos2(x))2
sin4(x)−cos4(x)
Apply exponent rule: abc=(ab)csin4(x)=(sin2(x))2=(sin2(x))2−cos4(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(sin2(x))2−(cos2(x))2
=(sin2(x))2−(cos2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin2(x))2−(cos2(x))2=(sin2(x)+cos2(x))(sin2(x)−cos2(x))=(sin2(x)+cos2(x))(sin2(x)−cos2(x))
Factor sin2(x)−cos2(x):(sin(x)+cos(x))(sin(x)−cos(x))
sin2(x)−cos2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−cos2(x)=(sin(x)+cos(x))(sin(x)−cos(x))=(sin(x)+cos(x))(sin(x)−cos(x))
=(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))
(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))=0
Rewrite using trig identities
(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x))
Use the Pythagorean identity: cos2(x)+sin2(x)=1=(−cos(x)+sin(x))(cos(x)+sin(x))⋅1
Simplify (−cos(x)+sin(x))(cos(x)+sin(x))⋅1:(−cos(x)+sin(x))(cos(x)+sin(x))
(−cos(x)+sin(x))(cos(x)+sin(x))⋅1
Multiply: (cos(x)+sin(x))⋅1=(cos(x)+sin(x))=(sin(x)−cos(x))(cos(x)+sin(x))
=(−cos(x)+sin(x))(cos(x)+sin(x))
(−cos(x)+sin(x))(cos(x)+sin(x))=0
Solving each part separately−cos(x)+sin(x)=0orcos(x)+sin(x)=0
−cos(x)+sin(x)=0:x=4π​+πn
−cos(x)+sin(x)=0
Rewrite using trig identities
−cos(x)+sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)−cos(x)+sin(x)​=cos(x)0​
Simplify−1+cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−1+tan(x)=0
−1+tan(x)=0
Move 1to the right side
−1+tan(x)=0
Add 1 to both sides−1+tan(x)+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
cos(x)+sin(x)=0:x=43π​+πn
cos(x)+sin(x)=0
Rewrite using trig identities
cos(x)+sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+sin(x)​=cos(x)0​
Simplify1+cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+tan(x)=0
1+tan(x)=0
Move 1to the right side
1+tan(x)=0
Subtract 1 from both sides1+tan(x)−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Combine all the solutionsx=4π​+πn,x=43π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

10.5^2=6.7^2+7.8^2-2*6.7*7.8*cos(x)3sinh(x)-cosh(x)=1tan(45+x/3)=0.58r=a(1+sin(x))tan(Θ)=1.4,180<,Θ<270

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^4(x)=cos^4(x) ?

    The general solution for sin^4(x)=cos^4(x) is x= pi/4+pin,x=(3pi)/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024