Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan^2(3x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan2(3x)=1

Solution

x=18π​+3πn​,x=−18π​+3πn​
+1
Degrees
x=10∘+60∘n,x=−10∘+60∘n
Solution steps
3tan2(3x)=1
Solve by substitution
3tan2(3x)=1
Let: tan(3x)=u3u2=1
3u2=1:u=31​​,u=−31​​
3u2=1
Divide both sides by 3
3u2=1
Divide both sides by 333u2​=31​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
Substitute back u=tan(3x)tan(3x)=31​​,tan(3x)=−31​​
tan(3x)=31​​,tan(3x)=−31​​
tan(3x)=31​​:x=18π​+3πn​
tan(3x)=31​​
Apply trig inverse properties
tan(3x)=31​​
General solutions for tan(3x)=31​​tan(x)=a⇒x=arctan(a)+πn3x=arctan(31​​)+πn
3x=arctan(31​​)+πn
Solve 3x=arctan(31​​)+πn:x=18π​+3πn​
3x=arctan(31​​)+πn
Simplify arctan(31​​)+πn:6π​+πn
arctan(31​​)+πn
Use the following trivial identity:arctan(31​​)=6π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=6π​+πn
3x=6π​+πn
Divide both sides by 3
3x=6π​+πn
Divide both sides by 333x​=36π​​+3πn​
Simplify
33x​=36π​​+3πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 36π​​+3πn​:18π​+3πn​
36π​​+3πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=18π​+3πn​
x=18π​+3πn​
x=18π​+3πn​
x=18π​+3πn​
x=18π​+3πn​
tan(3x)=−31​​:x=−18π​+3πn​
tan(3x)=−31​​
Apply trig inverse properties
tan(3x)=−31​​
General solutions for tan(3x)=−31​​tan(x)=−a⇒x=arctan(−a)+πn3x=arctan(−31​​)+πn
3x=arctan(−31​​)+πn
Solve 3x=arctan(−31​​)+πn:x=−18π​+3πn​
3x=arctan(−31​​)+πn
Simplify arctan(−31​​)+πn:−6π​+πn
arctan(−31​​)+πn
arctan(−31​​)=−6π​
arctan(−31​​)
Use the following property: arctan(−x)=−arctan(x)arctan(−31​​)=−arctan(31​​)=−arctan(31​​)
Use the following trivial identity:arctan(31​​)=6π​
arctan(31​​)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=6π​
=−6π​
=−6π​+πn
3x=−6π​+πn
Divide both sides by 3
3x=−6π​+πn
Divide both sides by 333x​=−36π​​+3πn​
Simplify
33x​=−36π​​+3πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −36π​​+3πn​:−18π​+3πn​
−36π​​+3πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=−18π​+3πn​
x=−18π​+3πn​
x=−18π​+3πn​
x=−18π​+3πn​
x=−18π​+3πn​
Combine all the solutionsx=18π​+3πn​,x=−18π​+3πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6tan(x)-5csc(x)=03csc(x)-6=0,0<= x<= 360-sec^2(x)+1=-5sec(x)-5tan^2(x)+4tan(x)+3=0(1+tan(x))^2+(1-tan(x))^2=sec^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan^2(3x)=1 ?

    The general solution for 3tan^2(3x)=1 is x= pi/(18)+(pin)/3 ,x=-pi/(18)+(pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024