Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(3x)*sin(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(3x)⋅sin(x)=1

Solution

x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn,x=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=330∘+360∘n,x=45∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=315∘+360∘n
Solution steps
2sin(3x)sin(x)=1
Subtract 1 from both sides2sin(3x)sin(x)−1=0
Rewrite using trig identities
−1+2sin(3x)sin(x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Simplify cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Expand (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Expand sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Simplify 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Simplify sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Group like terms=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Add similar elements: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Add similar elements: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−1+2(3sin(x)−4sin3(x))sin(x)
−1+(3sin(x)−4sin3(x))⋅2sin(x)=0
Solve by substitution
−1+(3sin(x)−4sin3(x))⋅2sin(x)=0
Let: sin(x)=u−1+(3u−4u3)⋅2u=0
−1+(3u−4u3)⋅2u=0:u=21​,u=−21​,u=21​​,u=−21​​
−1+(3u−4u3)⋅2u=0
Expand −1+(3u−4u3)⋅2u:−1+6u2−8u4
−1+(3u−4u3)⋅2u
=−1+2u(3u−4u3)
Expand 2u(3u−4u3):6u2−8u4
2u(3u−4u3)
Apply the distributive law: a(b−c)=ab−aca=2u,b=3u,c=4u3=2u⋅3u−2u⋅4u3
=2⋅3uu−2⋅4u3u
Simplify 2⋅3uu−2⋅4u3u:6u2−8u4
2⋅3uu−2⋅4u3u
2⋅3uu=6u2
2⋅3uu
Multiply the numbers: 2⋅3=6=6uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=6u1+1
Add the numbers: 1+1=2=6u2
2⋅4u3u=8u4
2⋅4u3u
Multiply the numbers: 2⋅4=8=8u3u
Apply exponent rule: ab⋅ac=ab+cu3u=u3+1=8u3+1
Add the numbers: 3+1=4=8u4
=6u2−8u4
=6u2−8u4
=−1+6u2−8u4
−1+6u2−8u4=0
Write in the standard form an​xn+…+a1​x+a0​=0−8u4+6u2−1=0
Rewrite the equation with v=u2 and v2=u4−8v2+6v−1=0
Solve −8v2+6v−1=0:v=41​,v=21​
−8v2+6v−1=0
Solve with the quadratic formula
−8v2+6v−1=0
Quadratic Equation Formula:
For a=−8,b=6,c=−1v1,2​=2(−8)−6±62−4(−8)(−1)​​
v1,2​=2(−8)−6±62−4(−8)(−1)​​
62−4(−8)(−1)​=2
62−4(−8)(−1)​
Apply rule −(−a)=a=62−4⋅8⋅1​
Multiply the numbers: 4⋅8⋅1=32=62−32​
62=36=36−32​
Subtract the numbers: 36−32=4=4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
v1,2​=2(−8)−6±2​
Separate the solutionsv1​=2(−8)−6+2​,v2​=2(−8)−6−2​
v=2(−8)−6+2​:41​
2(−8)−6+2​
Remove parentheses: (−a)=−a=−2⋅8−6+2​
Add/Subtract the numbers: −6+2=−4=−2⋅8−4​
Multiply the numbers: 2⋅8=16=−16−4​
Apply the fraction rule: −b−a​=ba​=164​
Cancel the common factor: 4=41​
v=2(−8)−6−2​:21​
2(−8)−6−2​
Remove parentheses: (−a)=−a=−2⋅8−6−2​
Subtract the numbers: −6−2=−8=−2⋅8−8​
Multiply the numbers: 2⋅8=16=−16−8​
Apply the fraction rule: −b−a​=ba​=168​
Cancel the common factor: 8=21​
The solutions to the quadratic equation are:v=41​,v=21​
v=41​,v=21​
Substitute back v=u2,solve for u
Solve u2=41​:u=21​,u=−21​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Solve u2=21​:u=21​​,u=−21​​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
The solutions are
u=21​,u=−21​,u=21​​,u=−21​​
Substitute back u=sin(x)sin(x)=21​,sin(x)=−21​,sin(x)=21​​,sin(x)=−21​​
sin(x)=21​,sin(x)=−21​,sin(x)=21​​,sin(x)=−21​​
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=21​​:x=4π​+2πn,x=43π​+2πn
sin(x)=21​​
General solutions for sin(x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
sin(x)=−21​​:x=45π​+2πn,x=47π​+2πn
sin(x)=−21​​
General solutions for sin(x)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn,x=4π​+2πn,x=43π​+2πn,x=45π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arcsin(6x)+arcsin(6sqrt(3x))=-pi/22cos^2(x)+sin(x)=5solvefor x,Y=0.5sin(3.07x-2.4t+0.59)sin(x-30)cos(x-30)=(sqrt(3))/4cos(θ)=-7/15 ,cos(θ/2),180<θ<270
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024