Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x-30)cos(x-30)=(sqrt(3))/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x−30∘)cos(x−30∘)=43​​

Solution

x=60∘+180∘n,x=180∘n+90∘
+1
Radians
x=3π​+πn,x=2π​+πn
Solution steps
sin(x−30∘)cos(x−30∘)=43​​
Rewrite using trig identities
sin(x−30∘)cos(x−30∘)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=2sin(2(−30∘+x))​
2sin(2(−30∘+x))​=43​​
Multiply both sides by 2
2sin(2(−30∘+x))​=43​​
Multiply both sides by 222sin(2(−30∘+x))​=423​​
Simplifysin(2(−30∘+x))=23​​
sin(2(−30∘+x))=23​​
General solutions for sin(2(−30∘+x))=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2(−30∘+x)=60∘+360∘n,2(−30∘+x)=120∘+360∘n
2(−30∘+x)=60∘+360∘n,2(−30∘+x)=120∘+360∘n
Solve 2(−30∘+x)=60∘+360∘n:x=60∘+180∘n
2(−30∘+x)=60∘+360∘n
Divide both sides by 2
2(−30∘+x)=60∘+360∘n
Divide both sides by 222(−30∘+x)​=260∘​+2360∘n​
Simplify
22(−30∘+x)​=260∘​+2360∘n​
Simplify 22(−30∘+x)​:−30∘+x
22(−30∘+x)​
Divide the numbers: 22​=1=−30∘+x
Simplify 260∘​+2360∘n​:30∘+180∘n
260∘​+2360∘n​
260∘​=30∘
260∘​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2180∘​
Multiply the numbers: 3⋅2=6=30∘
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=30∘+180∘n
−30∘+x=30∘+180∘n
−30∘+x=30∘+180∘n
−30∘+x=30∘+180∘n
Move 30∘to the right side
−30∘+x=30∘+180∘n
Add 30∘ to both sides−30∘+x+30∘=30∘+180∘n+30∘
Simplify
−30∘+x+30∘=30∘+180∘n+30∘
Simplify −30∘+x+30∘:x
−30∘+x+30∘
Add similar elements: −30∘+30∘=0
=x
Simplify 30∘+180∘n+30∘:60∘+180∘n
30∘+180∘n+30∘
Group like terms=30∘+30∘+180∘n
Combine the fractions 30∘+30∘:60∘
Apply rule ca​±cb​=ca±b​=6180∘+180∘​
Add similar elements: 180∘+180∘=360∘=60∘
Cancel the common factor: 2=60∘
=60∘+180∘n
x=60∘+180∘n
x=60∘+180∘n
x=60∘+180∘n
Solve 2(−30∘+x)=120∘+360∘n:x=180∘n+90∘
2(−30∘+x)=120∘+360∘n
Divide both sides by 2
2(−30∘+x)=120∘+360∘n
Divide both sides by 222(−30∘+x)​=2120∘​+2360∘n​
Simplify
22(−30∘+x)​=2120∘​+2360∘n​
Simplify 22(−30∘+x)​:−30∘+x
22(−30∘+x)​
Divide the numbers: 22​=1=−30∘+x
Simplify 2120∘​+2360∘n​:60∘+180∘n
2120∘​+2360∘n​
2120∘​=60∘
2120∘​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2360∘​
Multiply the numbers: 3⋅2=6=60∘
Cancel the common factor: 2=60∘
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=60∘+180∘n
−30∘+x=60∘+180∘n
−30∘+x=60∘+180∘n
−30∘+x=60∘+180∘n
Move 30∘to the right side
−30∘+x=60∘+180∘n
Add 30∘ to both sides−30∘+x+30∘=60∘+180∘n+30∘
Simplify
−30∘+x+30∘=60∘+180∘n+30∘
Simplify −30∘+x+30∘:x
−30∘+x+30∘
Add similar elements: −30∘+30∘=0
=x
Simplify 60∘+180∘n+30∘:180∘n+90∘
60∘+180∘n+30∘
Group like terms=180∘n+60∘+30∘
Least Common Multiplier of 3,6:6
3,6
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 6=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 60∘:multiply the denominator and numerator by 260∘=3⋅2180∘2​=60∘
=60∘+30∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6180∘2+180∘​
Add similar elements: 360∘+180∘=540∘=90∘
Cancel the common factor: 3=180∘n+90∘
x=180∘n+90∘
x=180∘n+90∘
x=180∘n+90∘
x=60∘+180∘n,x=180∘n+90∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=-7/15 ,cos(θ/2),180<θ<270tan(x/2)=4-2sin(x)=-sqrt(2)sin(pi-x)=cos((3pi)/2-x)+cos(pi)4csc(x)+8=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x-30)cos(x-30)=(sqrt(3))/4 ?

    The general solution for sin(x-30)cos(x-30)=(sqrt(3))/4 is x=60+180n,x=180n+90
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024