Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(pi-x)=cos((3pi)/2-x)+cos(pi)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(π−x)=cos(23π​−x)+cos(π)

Solution

x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=210∘+360∘n,x=330∘+360∘n
Solution steps
sin(π−x)=cos(23π​−x)+cos(π)
cos(π)=−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
=−1
sin(π−x)=cos(23π​−x)+−1
Rewrite using trig identities
sin(π−x)=cos(23π​−x)+−1
Rewrite using trig identities
sin(π−x)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(π)cos(x)−cos(π)sin(x)
Simplify sin(π)cos(x)−cos(π)sin(x):sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Refine=sin(x)
=sin(x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(23π​)cos(x)+sin(23π​)sin(x)
Simplify cos(23π​)cos(x)+sin(23π​)sin(x):−sin(x)
cos(23π​)cos(x)+sin(23π​)sin(x)
cos(23π​)cos(x)=0
cos(23π​)cos(x)
cos(23π​)=0
cos(23π​)
Rewrite using trig identities:cos(π)cos(2π​)−sin(π)sin(2π​)
cos(23π​)
Write cos(23π​)as cos(π+2π​)=cos(π+2π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(2π​)−sin(π)sin(2π​)
=cos(π)cos(2π​)−sin(π)sin(2π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=(−1)⋅0−0⋅1
Simplify=0
=0⋅cos(x)
Apply rule 0⋅a=0=0
sin(23π​)sin(x)=−sin(x)
sin(23π​)sin(x)
sin(23π​)=−1
sin(23π​)
Rewrite using trig identities:sin(π)cos(2π​)+cos(π)sin(2π​)
sin(23π​)
Write sin(23π​)as sin(π+2π​)=sin(π+2π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(2π​)+cos(π)sin(2π​)
=sin(π)cos(2π​)+cos(π)sin(2π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(2π​)=0
cos(2π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=0⋅0+(−1)⋅1
Simplify=−1
=−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)
=0−sin(x)
0−sin(x)=−sin(x)=−sin(x)
=−sin(x)
sin(x)=−sin(x)−1
sin(x)=−sin(x)−1
Subtract −sin(x)−1 from both sides2sin(x)+1=0
Move 1to the right side
2sin(x)+1=0
Subtract 1 from both sides2sin(x)+1−1=0−1
Simplify2sin(x)=−1
2sin(x)=−1
Divide both sides by 2
2sin(x)=−1
Divide both sides by 222sin(x)​=2−1​
Simplifysin(x)=−21​
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4csc(x)+8=0sin((3pi)/2-2x)=sin(x)solvefor α,sin(α)-sin(β)=cos(β)-cos(α)sin(2x)=sqrt(3)cos(2x+15)=0.3

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(pi-x)=cos((3pi)/2-x)+cos(pi) ?

    The general solution for sin(pi-x)=cos((3pi)/2-x)+cos(pi) is x=(7pi)/6+2pin,x=(11pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024