Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(6x)+arcsin(6sqrt(3x))=-pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(6x)+arcsin(63x​)=−2π​

Solution

NoSolutionforx∈R
Solution steps
arcsin(6x)+arcsin(63x​)=−2π​
Rewrite using trig identities
arcsin(6x)+arcsin(63x​)
Use the Sum to Product identity: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(6x1−(63x​)2​+63x​1−(6x)2​)
arcsin(6x1−(63x​)2​+63x​1−(6x)2​)=−2π​
Apply trig inverse properties
arcsin(6x1−(63x​)2​+63x​1−(6x)2​)=−2π​
arcsin(x)=a⇒x=sin(a)6x1−(63x​)2​+63x​1−(6x)2​=sin(−2π​)
sin(−2π​)=−1
sin(−2π​)
Use the following property: sin(−x)=−sin(x)sin(−2π​)=−sin(2π​)=−sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=−1
6x1−(63x​)2​+63x​1−(6x)2​=−1
6x1−(63x​)2​+63x​1−(6x)2​=−1
Solve 6x1−(63x​)2​+63x​1−(6x)2​=−1:No Solution for x∈R
6x1−(63x​)2​+63x​1−(6x)2​=−1
Remove square roots
6x1−(63x​)2​+63x​1−(6x)2​=−1
Subtract 63x​1−(6x)2​ from both sides6x1−(63x​)2​+63x​1−(6x)2​−63x​1−(6x)2​=−1−63x​1−(6x)2​
Simplify61−(63x​)2​x=−1−63x​1−(6x)2​
Square both sides:36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
6x1−(63x​)2​+63x​1−(6x)2​=−1
(61−(63x​)2​x)2=(−1−63x​1−(6x)2​)2
Expand (61−(63x​)2​x)2:36x2−3888x3
(61−(63x​)2​x)2
Apply exponent rule: (a⋅b)n=anbn=62x2(1−(63x​)2​)2
(1−(63x​)2​)2:1−(63x​)2
Apply radical rule: a​=a21​=((1−(63x​)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(63x​)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(63x​)2
=62(1−(63x​)2)x2
62=36=36(1−(63x​)2)x2
Expand 36(1−(63x​)2)x2:36x2−3888x3
36(1−(63x​)2)x2
(63x​)2=62⋅3x
(63x​)2
3x​=3​x​
3x​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0=3​x​
=(63​x​)2
Apply exponent rule: (a⋅b)n=anbn=62(3​)2(x​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=62⋅3(x​)2
(x​)2:x
Apply radical rule: a​=a21​=(x21​)2
Apply exponent rule: (ab)c=abc=x21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=x
=62⋅3x
=36x2(−62⋅3x+1)
62⋅3x=108x
62⋅3x
62=36=36⋅3x
Multiply the numbers: 36⋅3=108=108x
=36x2(−108x+1)
=36x2(1−108x)
Apply the distributive law: a(b−c)=ab−aca=36x2,b=1,c=108x=36x2⋅1−36x2⋅108x
=36⋅1⋅x2−36⋅108x2x
Simplify 36⋅1⋅x2−36⋅108x2x:36x2−3888x3
36⋅1⋅x2−36⋅108x2x
36⋅1⋅x2=36x2
36⋅1⋅x2
Multiply the numbers: 36⋅1=36=36x2
36⋅108x2x=3888x3
36⋅108x2x
Multiply the numbers: 36⋅108=3888=3888x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=3888x2+1
Add the numbers: 2+1=3=3888x3
=36x2−3888x3
=36x2−3888x3
=36x2−3888x3
Expand (−1−63x​1−(6x)2​)2:1+123​x​1−36x2​+108x−3888x3
(−1−63x​1−(6x)2​)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−1,b=63x​1−(6x)2​
=(−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
Simplify (−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2:1+123x​1−(6x)2​+363x1−(6x)2
(−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
Apply rule −(−a)=a=(−1)2+2⋅1⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
2⋅1⋅63x​1−(6x)2​=123x​1−(6x)2​
2⋅1⋅63x​1−(6x)2​
Multiply the numbers: 2⋅1⋅6=12=123x​1−(6x)2​
(63x​1−(6x)2​)2=363x1−(6x)2
(63x​1−(6x)2​)2
Apply exponent rule: (a⋅b)n=anbn=62(3x​)2(1−(6x)2​)2
(3x​)2:3x
Apply radical rule: a​=a21​=((3x)21​)2
Apply exponent rule: (ab)c=abc=(3x)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3x
=62⋅3x(1−(6x)2​)2
(1−(6x)2​)2:1−(6x)2
Apply radical rule: a​=a21​=((1−(6x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(6x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(6x)2
=62⋅3x(1−(6x)2)
62=36=36⋅3x(1−(6x)2)
=1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
=1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
Expand 1+123x​1−(6x)2​+36⋅3x(1−(6x)2):1+123​x​1−36x2​+108x−3888x3
1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
123x​1−(6x)2​=123​x​1−36x2​
123x​1−(6x)2​
3x​=3​x​
3x​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0=3​x​
=123​x​−(6x)2+1​
1−(6x)2​=1−36x2​
1−(6x)2​
(6x)2=36x2
(6x)2
Apply exponent rule: (a⋅b)n=anbn=62x2
62=36=36x2
=1−36x2​
=123​x​−36x2+1​
36⋅3x(1−(6x)2)=108x(1−36x2)
36⋅3x(1−(6x)2)
(6x)2=36x2
(6x)2
Apply exponent rule: (a⋅b)n=anbn=62x2
62=36=36x2
=36⋅3x(−36x2+1)
Multiply the numbers: 36⋅3=108=108x(−36x2+1)
=1+123​x​−36x2+1​+108x(−36x2+1)
Expand 108x(1−36x2):108x−3888x3
108x(1−36x2)
Apply the distributive law: a(b−c)=ab−aca=108x,b=1,c=36x2=108x⋅1−108x⋅36x2
=108⋅1⋅x−108⋅36x2x
Simplify 108⋅1⋅x−108⋅36x2x:108x−3888x3
108⋅1⋅x−108⋅36x2x
108⋅1⋅x=108x
108⋅1⋅x
Multiply the numbers: 108⋅1=108=108x
108⋅36x2x=3888x3
108⋅36x2x
Multiply the numbers: 108⋅36=3888=3888x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=3888x2+1
Add the numbers: 2+1=3=3888x3
=108x−3888x3
=108x−3888x3
=1+123​x​1−36x2​+108x−3888x3
=1+123​x​1−36x2​+108x−3888x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
Subtract 108x−3888x3 from both sides36x2−3888x3−(108x−3888x3)=1+123​x​1−36x2​+108x−3888x3−(108x−3888x3)
Simplify36x2−108x=123​x​1−36x2​+1
Subtract 1 from both sides36x2−108x−1=123​x​1−36x2​+1−1
Simplify36x2−108x−1=123​x​1−36x2​
Square both sides:1296x4−7776x3+11592x2+216x+1=432x−15552x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
(36x2−108x−1)2=(123​x​1−36x2​)2
Expand (36x2−108x−1)2:1296x4−7776x3+11592x2+216x+1
(36x2−108x−1)2
(36x2−108x−1)2=(36x2−108x−1)(36x2−108x−1)=(36x2−108x−1)(36x2−108x−1)
Expand (36x2−108x−1)(36x2−108x−1):1296x4−7776x3+11592x2+216x+1
(36x2−108x−1)(36x2−108x−1)
Distribute parentheses=36x2⋅36x2+36x2(−108x)+36x2(−1)+(−108x)⋅36x2+(−108x)(−108x)+(−108x)(−1)+(−1)⋅36x2+(−1)(−108x)+(−1)(−1)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Simplify 36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1:1296x4−7776x3+11592x2+216x+1
36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Add similar elements: −36⋅108x2x−108⋅36x2x=−2⋅108⋅36x2x=36⋅36x2x2−2⋅108⋅36x2x−36⋅1⋅x2+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Add similar elements: 108⋅1⋅x+1⋅108x=2⋅1⋅108x=36⋅36x2x2−2⋅108⋅36x2x−36⋅1⋅x2+108⋅108xx+2⋅1⋅108x−1⋅36x2+1⋅1
Add similar elements: −36⋅1⋅x2−1⋅36x2=−2⋅1⋅36x2=36⋅36x2x2−2⋅108⋅36x2x−2⋅1⋅36x2+108⋅108xx+2⋅1⋅108x+1⋅1
36⋅36x2x2=1296x4
36⋅36x2x2
Multiply the numbers: 36⋅36=1296=1296x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=1296x2+2
Add the numbers: 2+2=4=1296x4
2⋅108⋅36x2x=7776x3
2⋅108⋅36x2x
Multiply the numbers: 2⋅108⋅36=7776=7776x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=7776x2+1
Add the numbers: 2+1=3=7776x3
2⋅1⋅36x2=72x2
2⋅1⋅36x2
Multiply the numbers: 2⋅1⋅36=72=72x2
108⋅108xx=11664x2
108⋅108xx
Multiply the numbers: 108⋅108=11664=11664xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=11664x1+1
Add the numbers: 1+1=2=11664x2
2⋅1⋅108x=216x
2⋅1⋅108x
Multiply the numbers: 2⋅1⋅108=216=216x
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
=1296x4−7776x3−72x2+11664x2+216x+1
Add similar elements: −72x2+11664x2=11592x2=1296x4−7776x3+11592x2+216x+1
=1296x4−7776x3+11592x2+216x+1
=1296x4−7776x3+11592x2+216x+1
Expand (123​x​1−36x2​)2:432x−15552x3
(123​x​1−36x2​)2
Apply exponent rule: (a⋅b)n=anbn=122(3​)2(x​)2(1−36x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=122⋅3(x​)2(1−36x2​)2
(x​)2:x
Apply radical rule: a​=a21​=(x21​)2
Apply exponent rule: (ab)c=abc=x21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=x
=122⋅3x(1−36x2​)2
(1−36x2​)2:1−36x2
Apply radical rule: a​=a21​=((1−36x2)21​)2
Apply exponent rule: (ab)c=abc=(1−36x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−36x2
=122⋅3x(1−36x2)
Refine=432x(1−36x2)
Expand 432x(1−36x2):432x−15552x3
432x(1−36x2)
Apply the distributive law: a(b−c)=ab−aca=432x,b=1,c=36x2=432x⋅1−432x⋅36x2
=432⋅1⋅x−432⋅36x2x
Simplify 432⋅1⋅x−432⋅36x2x:432x−15552x3
432⋅1⋅x−432⋅36x2x
432⋅1⋅x=432x
432⋅1⋅x
Multiply the numbers: 432⋅1=432=432x
432⋅36x2x=15552x3
432⋅36x2x
Multiply the numbers: 432⋅36=15552=15552x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=15552x2+1
Add the numbers: 2+1=3=15552x3
=432x−15552x3
=432x−15552x3
=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Solve 1296x4−7776x3+11592x2+216x+1=432x−15552x3:x≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Move 15552x3to the left side
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Add 15552x3 to both sides1296x4−7776x3+11592x2+216x+1+15552x3=432x−15552x3+15552x3
Simplify1296x4+7776x3+11592x2+216x+1=432x
1296x4+7776x3+11592x2+216x+1=432x
Move 432xto the left side
1296x4+7776x3+11592x2+216x+1=432x
Subtract 432x from both sides1296x4+7776x3+11592x2+216x+1−432x=432x−432x
Simplify1296x4+7776x3+11592x2−216x+1=0
1296x4+7776x3+11592x2−216x+1=0
Divide both sides by 129612961296x4​+12967776x3​+129611592x2​−1296216x​+12961​=12960​
Write in the standard form an​xn+…+a1​x+a0​=0x4+6x3+18161x2​−6x​+12961​=0
Find one solution for x4+6x3+8.94444…x2−0.16666…x+0.00077…=0 using Newton-Raphson:x≈0.00923…
x4+6x3+8.94444…x2−0.16666…x+0.00077…=0
Newton-Raphson Approximation Definition
f(x)=x4+6x3+8.94444…x2−0.16666…x+0.00077…
Find f′(x):4x3+18x2+17.88888…x−0.16666…
dxd​(x4+6x3+8.94444…x2−0.16666…x+0.00077…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dxd​(x4)+dxd​(6x3)+dxd​(8.94444…x2)−dxd​(0.16666…x)+dxd​(0.00077…)
dxd​(x4)=4x3
dxd​(x4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4x4−1
Simplify=4x3
dxd​(6x3)=18x2
dxd​(6x3)
Take the constant out: (a⋅f)′=a⋅f′=6dxd​(x3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6⋅3x3−1
Simplify=18x2
dxd​(8.94444…x2)=17.88888…x
dxd​(8.94444…x2)
Take the constant out: (a⋅f)′=a⋅f′=8.94444…dxd​(x2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8.94444…⋅2x2−1
Simplify=17.88888…x
dxd​(0.16666…x)=0.16666…
dxd​(0.16666…x)
Take the constant out: (a⋅f)′=a⋅f′=0.16666…dxdx​
Apply the common derivative: dxdx​=1=0.16666…⋅1
Simplify=0.16666…
dxd​(0.00077…)=0
dxd​(0.00077…)
Derivative of a constant: dxd​(a)=0=0
=4x3+18x2+17.88888…x−0.16666…+0
Simplify=4x3+18x2+17.88888…x−0.16666…
Let x0​=0Compute xn+1​ until Δxn+1​<0.000001
x1​=0.00462…:Δx1​=0.00462…
f(x0​)=04+6⋅03+8.94444…⋅02−0.16666…⋅0+0.00077…=0.00077…f′(x0​)=4⋅03+18⋅02+17.88888…⋅0−0.16666…=−0.16666…x1​=0.00462…
Δx1​=∣0.00462…−0∣=0.00462…Δx1​=0.00462…
x2​=0.00693…:Δx2​=0.00230…
f(x1​)=0.00462…4+6⋅0.00462…3+8.94444…⋅0.00462…2−0.16666…⋅0.00462…+0.00077…=0.00019…f′(x1​)=4⋅0.00462…3+18⋅0.00462…2+17.88888…⋅0.00462…−0.16666…=−0.08346…x2​=0.00693…
Δx2​=∣0.00693…−0.00462…∣=0.00230…Δx2​=0.00230…
x3​=0.00808…:Δx3​=0.00114…
f(x2​)=0.00693…4+6⋅0.00693…3+8.94444…⋅0.00693…2−0.16666…⋅0.00693…+0.00077…=0.00004…f′(x2​)=4⋅0.00693…3+18⋅0.00693…2+17.88888…⋅0.00693…−0.16666…=−0.04176…x3​=0.00808…
Δx3​=∣0.00808…−0.00693…∣=0.00114…Δx3​=0.00114…
x4​=0.00865…:Δx4​=0.00057…
f(x3​)=0.00808…4+6⋅0.00808…3+8.94444…⋅0.00808…2−0.16666…⋅0.00808…+0.00077…=0.00001…f′(x3​)=4⋅0.00808…3+18⋅0.00808…2+17.88888…⋅0.00808…−0.16666…=−0.02088…x4​=0.00865…
Δx4​=∣0.00865…−0.00808…∣=0.00057…Δx4​=0.00057…
x5​=0.00894…:Δx5​=0.00028…
f(x4​)=0.00865…4+6⋅0.00865…3+8.94444…⋅0.00865…2−0.16666…⋅0.00865…+0.00077…=2.99676E−6f′(x4​)=4⋅0.00865…3+18⋅0.00865…2+17.88888…⋅0.00865…−0.16666…=−0.01044…x5​=0.00894…
Δx5​=∣0.00894…−0.00865…∣=0.00028…Δx5​=0.00028…
x6​=0.00908…:Δx6​=0.00014…
f(x5​)=0.00894…4+6⋅0.00894…3+8.94444…⋅0.00894…2−0.16666…⋅0.00894…+0.00077…=7.49047E−7f′(x5​)=4⋅0.00894…3+18⋅0.00894…2+17.88888…⋅0.00894…−0.16666…=−0.00522…x6​=0.00908…
Δx6​=∣0.00908…−0.00894…∣=0.00014…Δx6​=0.00014…
x7​=0.00915…:Δx7​=0.00007…
f(x6​)=0.00908…4+6⋅0.00908…3+8.94444…⋅0.00908…2−0.16666…⋅0.00908…+0.00077…=1.87244E−7f′(x6​)=4⋅0.00908…3+18⋅0.00908…2+17.88888…⋅0.00908…−0.16666…=−0.00261…x7​=0.00915…
Δx7​=∣0.00915…−0.00908…∣=0.00007…Δx7​=0.00007…
x8​=0.00919…:Δx8​=0.00003…
f(x7​)=0.00915…4+6⋅0.00915…3+8.94444…⋅0.00915…2−0.16666…⋅0.00915…+0.00077…=4.68088E−8f′(x7​)=4⋅0.00915…3+18⋅0.00915…2+17.88888…⋅0.00915…−0.16666…=−0.00130…x8​=0.00919…
Δx8​=∣0.00919…−0.00915…∣=0.00003…Δx8​=0.00003…
x9​=0.00921…:Δx9​=0.00001…
f(x8​)=0.00919…4+6⋅0.00919…3+8.94444…⋅0.00919…2−0.16666…⋅0.00919…+0.00077…=1.17019E−8f′(x8​)=4⋅0.00919…3+18⋅0.00919…2+17.88888…⋅0.00919…−0.16666…=−0.00065…x9​=0.00921…
Δx9​=∣0.00921…−0.00919…∣=0.00001…Δx9​=0.00001…
x10​=0.00922…:Δx10​=8.95953E−6
f(x9​)=0.00921…4+6⋅0.00921…3+8.94444…⋅0.00921…2−0.16666…⋅0.00921…+0.00077…=2.92544E−9f′(x9​)=4⋅0.00921…3+18⋅0.00921…2+17.88888…⋅0.00921…−0.16666…=−0.00032…x10​=0.00922…
Δx10​=∣0.00922…−0.00921…∣=8.95953E−6Δx10​=8.95953E−6
x11​=0.00922…:Δx11​=4.47973E−6
f(x10​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=7.31357E−10f′(x10​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00016…x11​=0.00922…
Δx11​=∣0.00922…−0.00922…∣=4.47973E−6Δx11​=4.47973E−6
x12​=0.00922…:Δx12​=2.23985E−6
f(x11​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=1.82839E−10f′(x11​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00008…x12​=0.00922…
Δx12​=∣0.00922…−0.00922…∣=2.23985E−6Δx12​=2.23985E−6
x13​=0.00922…:Δx13​=1.11992E−6
f(x12​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=4.57096E−11f′(x12​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00004…x13​=0.00922…
Δx13​=∣0.00922…−0.00922…∣=1.11992E−6Δx13​=1.11992E−6
x14​=0.00923…:Δx14​=5.59961E−7
f(x13​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=1.14274E−11f′(x13​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00002…x14​=0.00923…
Δx14​=∣0.00923…−0.00922…∣=5.59961E−7Δx14​=5.59961E−7
x≈0.00923…
Apply long division:x−0.00923…x4+6x3+18161x2​−6x​+12961​​=x3+6.00923…x2+8.99991…x−0.08359…
x3+6.00923…x2+8.99991…x−0.08359…≈0
Find one solution for x3+6.00923…x2+8.99991…x−0.08359…=0 using Newton-Raphson:x≈0.00923…
x3+6.00923…x2+8.99991…x−0.08359…=0
Newton-Raphson Approximation Definition
f(x)=x3+6.00923…x2+8.99991…x−0.08359…
Find f′(x):3x2+12.01846…x+8.99991…
dxd​(x3+6.00923…x2+8.99991…x−0.08359…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dxd​(x3)+dxd​(6.00923…x2)+dxd​(8.99991…x)−dxd​(0.08359…)
dxd​(x3)=3x2
dxd​(x3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3x3−1
Simplify=3x2
dxd​(6.00923…x2)=12.01846…x
dxd​(6.00923…x2)
Take the constant out: (a⋅f)′=a⋅f′=6.00923…dxd​(x2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6.00923…⋅2x2−1
Simplify=12.01846…x
dxd​(8.99991…x)=8.99991…
dxd​(8.99991…x)
Take the constant out: (a⋅f)′=a⋅f′=8.99991…dxdx​
Apply the common derivative: dxdx​=1=8.99991…⋅1
Simplify=8.99991…
dxd​(0.08359…)=0
dxd​(0.08359…)
Derivative of a constant: dxd​(a)=0=0
=3x2+12.01846…x+8.99991…−0
Simplify=3x2+12.01846…x+8.99991…
Let x0​=0Compute xn+1​ until Δxn+1​<0.000001
x1​=0.00928…:Δx1​=0.00928…
f(x0​)=03+6.00923…⋅02+8.99991…⋅0−0.08359…=−0.08359…f′(x0​)=3⋅02+12.01846…⋅0+8.99991…=8.99991…x1​=0.00928…
Δx1​=∣0.00928…−0∣=0.00928…Δx1​=0.00928…
x2​=0.00923…:Δx2​=0.00005…
f(x1​)=0.00928…3+6.00923…⋅0.00928…2+8.99991…⋅0.00928…−0.08359…=0.00051…f′(x1​)=3⋅0.00928…2+12.01846…⋅0.00928…+8.99991…=9.11180…x2​=0.00923…
Δx2​=∣0.00923…−0.00928…∣=0.00005…Δx2​=0.00005…
x3​=0.00923…:Δx3​=2.15173E−9
f(x2​)=0.00923…3+6.00923…⋅0.00923…2+8.99991…⋅0.00923…−0.08359…=1.96046E−8f′(x2​)=3⋅0.00923…2+12.01846…⋅0.00923…+8.99991…=9.11111…x3​=0.00923…
Δx3​=∣0.00923…−0.00923…∣=2.15173E−9Δx3​=2.15173E−9
x≈0.00923…
Apply long division:x−0.00923…x3+6.00923…x2+8.99991…x−0.08359…​=x2+6.01846…x+9.05547…
x2+6.01846…x+9.05547…≈0
Find one solution for x2+6.01846…x+9.05547…=0 using Newton-Raphson:x≈−3.00922…
x2+6.01846…x+9.05547…=0
Newton-Raphson Approximation Definition
f(x)=x2+6.01846…x+9.05547…
Find f′(x):2x+6.01846…
dxd​(x2+6.01846…x+9.05547…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dxd​(x2)+dxd​(6.01846…x)+dxd​(9.05547…)
dxd​(x2)=2x
dxd​(x2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2x2−1
Simplify=2x
dxd​(6.01846…x)=6.01846…
dxd​(6.01846…x)
Take the constant out: (a⋅f)′=a⋅f′=6.01846…dxdx​
Apply the common derivative: dxdx​=1=6.01846…⋅1
Simplify=6.01846…
dxd​(9.05547…)=0
dxd​(9.05547…)
Derivative of a constant: dxd​(a)=0=0
=2x+6.01846…+0
Simplify=2x+6.01846…
Let x0​=−2Compute xn+1​ until Δxn+1​<0.000001
x1​=−2.50461…:Δx1​=0.50461…
f(x0​)=(−2)2+6.01846…(−2)+9.05547…=1.01854…f′(x0​)=2(−2)+6.01846…=2.01846…x1​=−2.50461…
Δx1​=∣−2.50461…−(−2)∣=0.50461…Δx1​=0.50461…
x2​=−2.75692…:Δx2​=0.25230…
f(x1​)=(−2.50461…)2+6.01846…(−2.50461…)+9.05547…=0.25463…f′(x1​)=2(−2.50461…)+6.01846…=1.00923…x2​=−2.75692…
Δx2​=∣−2.75692…−(−2.50461…)∣=0.25230…Δx2​=0.25230…
x3​=−2.88307…:Δx3​=0.12615…
f(x2​)=(−2.75692…)2+6.01846…(−2.75692…)+9.05547…=0.06365…f′(x2​)=2(−2.75692…)+6.01846…=0.50461…x3​=−2.88307…
Δx3​=∣−2.88307…−(−2.75692…)∣=0.12615…Δx3​=0.12615…
x4​=−2.94615…:Δx4​=0.06307…
f(x3​)=(−2.88307…)2+6.01846…(−2.88307…)+9.05547…=0.01591…f′(x3​)=2(−2.88307…)+6.01846…=0.25230…x4​=−2.94615…
Δx4​=∣−2.94615…−(−2.88307…)∣=0.06307…Δx4​=0.06307…
x5​=−2.97769…:Δx5​=0.03153…
f(x4​)=(−2.94615…)2+6.01846…(−2.94615…)+9.05547…=0.00397…f′(x4​)=2(−2.94615…)+6.01846…=0.12615…x5​=−2.97769…
Δx5​=∣−2.97769…−(−2.94615…)∣=0.03153…Δx5​=0.03153…
x6​=−2.99346…:Δx6​=0.01576…
f(x5​)=(−2.97769…)2+6.01846…(−2.97769…)+9.05547…=0.00099…f′(x5​)=2(−2.97769…)+6.01846…=0.06307…x6​=−2.99346…
Δx6​=∣−2.99346…−(−2.97769…)∣=0.01576…Δx6​=0.01576…
x7​=−3.00134…:Δx7​=0.00788…
f(x6​)=(−2.99346…)2+6.01846…(−2.99346…)+9.05547…=0.00024…f′(x6​)=2(−2.99346…)+6.01846…=0.03153…x7​=−3.00134…
Δx7​=∣−3.00134…−(−2.99346…)∣=0.00788…Δx7​=0.00788…
x8​=−3.00528…:Δx8​=0.00394…
f(x7​)=(−3.00134…)2+6.01846…(−3.00134…)+9.05547…=0.00006…f′(x7​)=2(−3.00134…)+6.01846…=0.01576…x8​=−3.00528…
Δx8​=∣−3.00528…−(−3.00134…)∣=0.00394…Δx8​=0.00394…
x9​=−3.00725…:Δx9​=0.00197…
f(x8​)=(−3.00528…)2+6.01846…(−3.00528…)+9.05547…=0.00001…f′(x8​)=2(−3.00528…)+6.01846…=0.00788…x9​=−3.00725…
Δx9​=∣−3.00725…−(−3.00528…)∣=0.00197…Δx9​=0.00197…
x10​=−3.00824…:Δx10​=0.00098…
f(x9​)=(−3.00725…)2+6.01846…(−3.00725…)+9.05547…=3.88545E−6f′(x9​)=2(−3.00725…)+6.01846…=0.00394…x10​=−3.00824…
Δx10​=∣−3.00824…−(−3.00725…)∣=0.00098…Δx10​=0.00098…
x11​=−3.00873…:Δx11​=0.00049…
f(x10​)=(−3.00824…)2+6.01846…(−3.00824…)+9.05547…=9.71362E−7f′(x10​)=2(−3.00824…)+6.01846…=0.00197…x11​=−3.00873…
Δx11​=∣−3.00873…−(−3.00824…)∣=0.00049…Δx11​=0.00049…
x12​=−3.00898…:Δx12​=0.00024…
f(x11​)=(−3.00873…)2+6.01846…(−3.00873…)+9.05547…=2.4284E−7f′(x11​)=2(−3.00873…)+6.01846…=0.00098…x12​=−3.00898…
Δx12​=∣−3.00898…−(−3.00873…)∣=0.00024…Δx12​=0.00024…
x13​=−3.00910…:Δx13​=0.00012…
f(x12​)=(−3.00898…)2+6.01846…(−3.00898…)+9.05547…=6.071E−8f′(x12​)=2(−3.00898…)+6.01846…=0.00049…x13​=−3.00910…
Δx13​=∣−3.00910…−(−3.00898…)∣=0.00012…Δx13​=0.00012…
x14​=−3.00916…:Δx14​=0.00006…
f(x13​)=(−3.00910…)2+6.01846…(−3.00910…)+9.05547…=1.51774E−8f′(x13​)=2(−3.00910…)+6.01846…=0.00024…x14​=−3.00916…
Δx14​=∣−3.00916…−(−3.00910…)∣=0.00006…Δx14​=0.00006…
x15​=−3.00920…:Δx15​=0.00003…
f(x14​)=(−3.00916…)2+6.01846…(−3.00916…)+9.05547…=3.79428E−9f′(x14​)=2(−3.00916…)+6.01846…=0.00012…x15​=−3.00920…
Δx15​=∣−3.00920…−(−3.00916…)∣=0.00003…Δx15​=0.00003…
x16​=−3.00921…:Δx16​=0.00001…
f(x15​)=(−3.00920…)2+6.01846…(−3.00920…)+9.05547…=9.48491E−10f′(x15​)=2(−3.00920…)+6.01846…=0.00006…x16​=−3.00921…
Δx16​=∣−3.00921…−(−3.00920…)∣=0.00001…Δx16​=0.00001…
x17​=−3.00922…:Δx17​=7.69303E−6
f(x16​)=(−3.00921…)2+6.01846…(−3.00921…)+9.05547…=2.37044E−10f′(x16​)=2(−3.00921…)+6.01846…=0.00003…x17​=−3.00922…
Δx17​=∣−3.00922…−(−3.00921…)∣=7.69303E−6Δx17​=7.69303E−6
x18​=−3.00922…:Δx18​=3.83637E−6
f(x17​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=5.91829E−11f′(x17​)=2(−3.00922…)+6.01846…=0.00001…x18​=−3.00922…
Δx18​=∣−3.00922…−(−3.00922…)∣=3.83637E−6Δx18​=3.83637E−6
x19​=−3.00922…:Δx19​=1.89799E−6
f(x18​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=1.47171E−11f′(x18​)=2(−3.00922…)+6.01846…=7.75406E−6x19​=−3.00922…
Δx19​=∣−3.00922…−(−3.00922…)∣=1.89799E−6Δx19​=1.89799E−6
x20​=−3.00922…:Δx20​=9.10151E−7
f(x19​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=3.60245E−12f′(x19​)=2(−3.00922…)+6.01846…=3.95808E−6x20​=−3.00922…
Δx20​=∣−3.00922…−(−3.00922…)∣=9.10151E−7Δx20​=9.10151E−7
x≈−3.00922…
Apply long division:x+3.00922…x2+6.01846…x+9.05547…​=x+3.00923…
x+3.00923…≈0
x≈−3.00923…
The solutions arex≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
x≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
Verify Solutions:x≈0.00923…False,x≈0.00923…False,x≈−3.00922…False,x≈−3.00923…False
Check the solutions by plugging them into 6x1−(63x​)2​+63x​1−(6x)2​=−1
Remove the ones that don't agree with the equation.
Plug in x≈0.00923…:False
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=−1
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=0.99999…
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​
6⋅0.00923…1−(63⋅0.00923…​)2​=0.05538…0.00312…​
6⋅0.00923…1−(63⋅0.00923…​)2​
1−(63⋅0.00923…​)2​=0.00312…​
1−(63⋅0.00923…​)2​
(63⋅0.00923…​)2=0.99687…
(63⋅0.00923…​)2
Multiply the numbers: 3⋅0.00923…=0.02769…=(60.02769…​)2
Apply exponent rule: (a⋅b)n=anbn=62(0.02769…​)2
(0.02769…​)2:0.02769…
Apply radical rule: a​=a21​=(0.02769…21​)2
Apply exponent rule: (ab)c=abc=0.02769…21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=0.02769…
=62⋅0.02769…
62=36=36⋅0.02769…
Multiply the numbers: 36⋅0.02769…=0.99687…=0.99687…
=1−0.99687…​
Subtract the numbers: 1−0.99687…=0.00312…=0.00312…​
=6⋅0.00923…0.00312…​
Multiply the numbers: 6⋅0.00923…=0.05538…=0.05538…0.00312…​
63⋅0.00923…​1−(6⋅0.00923…)2​=60.02760…​
63⋅0.00923…​1−(6⋅0.00923…)2​
Multiply the numbers: 3⋅0.00923…=0.02769…=60.02769…​−(6⋅0.00923…)2+1​
1−(6⋅0.00923…)2​=0.99693…​
1−(6⋅0.00923…)2​
(6⋅0.00923…)2=0.00306…
(6⋅0.00923…)2
Multiply the numbers: 6⋅0.00923…=0.05538…=0.05538…2
0.05538…2=0.00306…=0.00306…
=1−0.00306…​
Subtract the numbers: 1−0.00306…=0.99693…=0.99693…​
=60.02769…​0.99693…​
Apply radical rule: a​b​=a⋅b​0.02769…​0.99693…​=0.02769…⋅0.99693…​=60.02769…⋅0.99693…​
Multiply the numbers: 0.02769…⋅0.99693…=0.02760…=60.02760…​
=0.05538…0.00312…​+60.02760…​
0.05538…0.00312…​=0.00309…
0.05538…0.00312…​
0.00312…​=0.05592…=0.05538…⋅0.05592…
Multiply the numbers: 0.05538…⋅0.05592…=0.00309…=0.00309…
60.02760…​=0.99690…
60.02760…​
0.02760…​=0.16615…=6⋅0.16615…
Multiply the numbers: 6⋅0.16615…=0.99690…=0.99690…
=0.00309…+0.99690…
Add the numbers: 0.00309…+0.99690…=0.99999…=0.99999…
0.99999…=−1
False
Plug in x≈0.00923…:False
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=−1
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=0.99999…
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​
6⋅0.00923…1−(63⋅0.00923…​)2​=0.05538…0.00300…​
6⋅0.00923…1−(63⋅0.00923…​)2​
1−(63⋅0.00923…​)2​=0.00300…​
1−(63⋅0.00923…​)2​
(63⋅0.00923…​)2=0.99699…
(63⋅0.00923…​)2
Multiply the numbers: 3⋅0.00923…=0.02769…=(60.02769…​)2
Apply exponent rule: (a⋅b)n=anbn=62(0.02769…​)2
(0.02769…​)2:0.02769…
Apply radical rule: a​=a21​=(0.02769…21​)2
Apply exponent rule: (ab)c=abc=0.02769…21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=0.02769…
=62⋅0.02769…
62=36=36⋅0.02769…
Multiply the numbers: 36⋅0.02769…=0.99699…=0.99699…
=1−0.99699…​
Subtract the numbers: 1−0.99699…=0.00300…=0.00300…​
=6⋅0.00923…0.00300…​
Multiply the numbers: 6⋅0.00923…=0.05538…=0.05538…0.00300…​
63⋅0.00923…​1−(6⋅0.00923…)2​=60.02760…​
63⋅0.00923…​1−(6⋅0.00923…)2​
Multiply the numbers: 3⋅0.00923…=0.02769…=60.02769…​−(6⋅0.00923…)2+1​
1−(6⋅0.00923…)2​=0.99693…​
1−(6⋅0.00923…)2​
(6⋅0.00923…)2=0.00306…
(6⋅0.00923…)2
Multiply the numbers: 6⋅0.00923…=0.05538…=0.05538…2
0.05538…2=0.00306…=0.00306…
=1−0.00306…​
Subtract the numbers: 1−0.00306…=0.99693…=0.99693…​
=60.02769…​0.99693…​
Apply radical rule: a​b​=a⋅b​0.02769…​0.99693…​=0.02769…⋅0.99693…​=60.02769…⋅0.99693…​
Multiply the numbers: 0.02769…⋅0.99693…=0.02760…=60.02760…​
=0.05538…0.00300…​+60.02760…​
0.05538…0.00300…​=0.00303…
0.05538…0.00300…​
0.00300…​=0.05483…=0.05538…⋅0.05483…
Multiply the numbers: 0.05538…⋅0.05483…=0.00303…=0.00303…
60.02760…​=0.99696…
60.02760…​
0.02760…​=0.16616…=6⋅0.16616…
Multiply the numbers: 6⋅0.16616…=0.99696…=0.99696…
=0.00303…+0.99696…
Add the numbers: 0.00303…+0.99696…=0.99999…=0.99999…
0.99999…=−1
False
Plug in x≈−3.00922…:False
6(−3.00922…)1−(63(−3.00922…)​)2​+63(−3.00922…)​1−(6(−3.00922…))2​=−1
6(−3.00922…)1−(63(−3.00922…)​)2​+63(−3.00922…)​1−(6(−3.00922…))2​=Undefined
Undefined=−1
False
Plug in x≈−3.00923…:False
6(−3.00923…)1−(63(−3.00923…)​)2​+63(−3.00923…)​1−(6(−3.00923…))2​=−1
6(−3.00923…)1−(63(−3.00923…)​)2​+63(−3.00923…)​1−(6(−3.00923…))2​=Undefined
Undefined=−1
False
The solution isNoSolutionforx∈R
NoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(6x)+arcsin(63x​)=−2π​
Remove the ones that don't agree with the equation.
NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)+sin(x)=5solvefor x,Y=0.5sin(3.07x-2.4t+0.59)sin(x-30)cos(x-30)=(sqrt(3))/4cos(θ)=-7/15 ,cos(θ/2),180<θ<270tan(x/2)=4

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(6x)+arcsin(6sqrt(3x))=-pi/2 ?

    The general solution for arcsin(6x)+arcsin(6sqrt(3x))=-pi/2 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024