Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(2x)+tan(2x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2x)+tan(2x)=2

Solution

x=0.32175…+πn
+1
Degrees
x=18.43494…∘+180∘n
Solution steps
sec(2x)+tan(2x)=2
Subtract 2 from both sidessec(2x)+tan(2x)−2=0
Express with sin, cos
−2+sec(2x)+tan(2x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−2+cos(2x)1​+tan(2x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−2+cos(2x)1​+cos(2x)sin(2x)​
Simplify −2+cos(2x)1​+cos(2x)sin(2x)​:cos(2x)−2cos(2x)+1+sin(2x)​
−2+cos(2x)1​+cos(2x)sin(2x)​
Combine the fractions cos(2x)1​+cos(2x)sin(2x)​:cos(2x)1+sin(2x)​
Apply rule ca​±cb​=ca±b​=cos(2x)1+sin(2x)​
=−2+cos(2x)sin(2x)+1​
Convert element to fraction: 2=cos(2x)2cos(2x)​=−cos(2x)2cos(2x)​+cos(2x)1+sin(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)−2cos(2x)+1+sin(2x)​
=cos(2x)−2cos(2x)+1+sin(2x)​
cos(2x)1+sin(2x)−2cos(2x)​=0
g(x)f(x)​=0⇒f(x)=01+sin(2x)−2cos(2x)=0
Rewrite using trig identities
1+sin(2x)−2cos(2x)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=1+sin(2x)−2(cos2(x)−sin2(x))
1+sin(2x)=(sin(x)+cos(x))2
1+sin(2x)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)=(cos2(x)+sin2(x))+sin(2x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos2(x)+sin2(x)+2sin(x)cos(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2sin2(x)+2sin(x)cos(x)+cos2(x)=(sin(x)+cos(x))2=(sin(x)+cos(x))2
=(sin(x)+cos(x))2−2(cos2(x)−sin2(x))
Simplify (sin(x)+cos(x))2−2(cos2(x)−sin2(x)):3sin2(x)+2sin(x)cos(x)−cos2(x)
(sin(x)+cos(x))2−2(cos2(x)−sin2(x))
(sin(x)+cos(x))2:sin2(x)+2sin(x)cos(x)+cos2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=sin(x),b=cos(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)−2(cos2(x)−sin2(x))
Expand −2(cos2(x)−sin2(x)):−2cos2(x)+2sin2(x)
−2(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=cos2(x),c=sin2(x)=−2cos2(x)−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2cos2(x)+2sin2(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)−2cos2(x)+2sin2(x)
Simplify sin2(x)+2sin(x)cos(x)+cos2(x)−2cos2(x)+2sin2(x):3sin2(x)+2sin(x)cos(x)−cos2(x)
sin2(x)+2sin(x)cos(x)+cos2(x)−2cos2(x)+2sin2(x)
Add similar elements: cos2(x)−2cos2(x)=−cos2(x)=sin2(x)+2sin(x)cos(x)−cos2(x)+2sin2(x)
Add similar elements: sin2(x)+2sin2(x)=3sin2(x)=3sin2(x)+2sin(x)cos(x)−cos2(x)
=3sin2(x)+2sin(x)cos(x)−cos2(x)
=3sin2(x)+2sin(x)cos(x)−cos2(x)
−cos2(x)+3sin2(x)+2cos(x)sin(x)=0
Factor −cos2(x)+3sin2(x)+2cos(x)sin(x):(3sin(x)−cos(x))(sin(x)+cos(x))
−cos2(x)+3sin2(x)+2cos(x)sin(x)
Break the expression into groups
3sin2(x)+2sin(x)cos(x)−cos2(x)
Definition
Factors of 3:1,3
3
Divisors (Factors)
Find the Prime factors of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Add 1 1
The factors of 31,3
Negative factors of 3:−1,−3
Multiply the factors by −1 to get the negative factors−1,−3
For every two factors such that u∗v=−3,check if u+v=2
Check u=1,v=−3:u∗v=−3,u+v=−2⇒FalseCheck u=3,v=−1:u∗v=−3,u+v=2⇒True
u=3,v=−1
Group into (ax2+uxy)+(vxy+cy2)(3sin2(x)−sin(x)cos(x))+(3sin(x)cos(x)−cos2(x))
=(3sin2(x)−sin(x)cos(x))+(3sin(x)cos(x)−cos2(x))
Factor out sin(x)from 3sin2(x)−sin(x)cos(x):sin(x)(3sin(x)−cos(x))
3sin2(x)−sin(x)cos(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=3sin(x)sin(x)−sin(x)cos(x)
Factor out common term sin(x)=sin(x)(3sin(x)−cos(x))
Factor out cos(x)from 3sin(x)cos(x)−cos2(x):cos(x)(3sin(x)−cos(x))
3sin(x)cos(x)−cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=3sin(x)cos(x)−cos(x)cos(x)
Factor out common term cos(x)=cos(x)(3sin(x)−cos(x))
=sin(x)(3sin(x)−cos(x))+cos(x)(3sin(x)−cos(x))
Factor out common term 3sin(x)−cos(x)=(3sin(x)−cos(x))(sin(x)+cos(x))
(3sin(x)−cos(x))(sin(x)+cos(x))=0
Solving each part separately3sin(x)−cos(x)=0orsin(x)+cos(x)=0
3sin(x)−cos(x)=0:x=arctan(31​)+πn
3sin(x)−cos(x)=0
Rewrite using trig identities
3sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)3sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)3sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)3tan(x)−1=0
3tan(x)−1=0
Move 1to the right side
3tan(x)−1=0
Add 1 to both sides3tan(x)−1+1=0+1
Simplify3tan(x)=1
3tan(x)=1
Divide both sides by 3
3tan(x)=1
Divide both sides by 333tan(x)​=31​
Simplifytan(x)=31​
tan(x)=31​
Apply trig inverse properties
tan(x)=31​
General solutions for tan(x)=31​tan(x)=a⇒x=arctan(a)+πnx=arctan(31​)+πn
x=arctan(31​)+πn
sin(x)+cos(x)=0:x=43π​+πn
sin(x)+cos(x)=0
Rewrite using trig identities
sin(x)+cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+1=0
tan(x)+1=0
Move 1to the right side
tan(x)+1=0
Subtract 1 from both sidestan(x)+1−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Combine all the solutionsx=arctan(31​)+πn,x=43π​+πn
Since the equation is undefined for:43π​+πnx=arctan(31​)+πn
Show solutions in decimal formx=0.32175…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(2x)+tan(2x)=9tan(4x)-tan(2x)=0solvefor t,sin(t)+2sin(2t)=0tan^2(x)-sin(x)tan^2(x)=04sin(x)=2.54648

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(2x)+tan(2x)=2 ?

    The general solution for sec(2x)+tan(2x)=2 is x=0.32175…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024