Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(x+2)=cos(x-2)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(x+2∘)=cos(x−2∘)

Lösung

x=−360∘n+45∘,x=−135∘−360∘n
+1
Radianten
x=4π​−2πn,x=−43π​−2πn
Schritte zur Lösung
sin(x+2∘)=cos(x−2∘)
Subtrahiere cos(x−2∘) von beiden Seitensin(x+2∘)−cos(x−2∘)=0
Vereinfache sin(x+2∘)−cos(x−2∘):sin(9090x+180∘​)−cos(9090x−180∘​)
sin(x+2∘)−cos(x−2∘)
Füge x+2∘zusammen:9090x+180∘​
x+2∘
Wandle das Element in einen Bruch um: x=90x90​=90x⋅90​+2∘
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=90x⋅90+180∘​
=sin(9090x+180∘​)−cos(x−2∘)
Füge x−2∘zusammen:9090x−180∘​
x−2∘
Wandle das Element in einen Bruch um: x=90x90​=90x⋅90​−2∘
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=90x⋅90−180∘​
=sin(9090x+180∘​)−cos(9090x−180∘​)
sin(9090x+180∘​)−cos(9090x−180∘​)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−cos(90−180∘+90x​)+sin(90180∘+90x​)
Verwende die folgenden Identitäten: sin(x)=cos(90∘−x)=−cos(90−180∘+90x​)+cos(90∘−90180∘+90x​)
Füge 90∘−90180∘+90x​zusammen:453960∘−45x​
90∘−90180∘+90x​
kleinstes gemeinsames Vielfache von2,90:90
2,90
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 2:2
2
2 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =2
Primfaktorzerlegung von 90:2⋅3⋅3⋅5
90
90ist durch 290=45⋅2teilbar=2⋅45
45ist durch 345=15⋅3teilbar=2⋅3⋅15
15ist durch 315=5⋅3teilbar=2⋅3⋅3⋅5
2,3,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3⋅3⋅5
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 2 oder 90vorkommt=2⋅3⋅3⋅5
Multipliziere die Zahlen: 2⋅3⋅3⋅5=90=90
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 90
Für 90∘:multipliziere den Nenner und Zähler mit 4590∘=2⋅45180∘45​=90∘
=90∘−90180∘+90x​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=90180∘45−(180∘+90x)​
Multipliziere aus 180∘45−(180∘+90x):7920∘−90x
180∘45−(180∘+90x)
=8100∘−(180∘+90x)
−(180∘+90x):−180∘−90x
−(180∘+90x)
Setze Klammern=−(180∘)−(90x)
Wende Minus-Plus Regeln an+(−a)=−a=−180∘−90x
=180∘45−180∘−90x
Addiere gleiche Elemente: 8100∘−180∘=7920∘=7920∘−90x
=907920∘−90x​
Faktorisiere 7920∘−90x:2(3960∘−45x)
7920∘−90x
Schreibe um=2⋅3960∘−2⋅45x
Klammere gleiche Terme aus 2=2(3960∘−45x)
=902(3960∘−45x)​
Streiche die gemeinsamen Faktoren: 2=453960∘−45x​
=−cos(90−180∘+90x​)+cos(453960∘−45x​)
Benutze die Identität von Summe und Produkt: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​)
Vereinfache −2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​):−2sin(43∘)sin(4−4x+180∘​)
−2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​)
2453960∘−45x​+90−180∘+90x​​=43∘
2453960∘−45x​+90−180∘+90x​​
Füge 453960∘−45x​+90−180∘+90x​zusammen:86∘
453960∘−45x​+90−180∘+90x​
kleinstes gemeinsames Vielfache von45,90:90
45,90
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 45:3⋅3⋅5
45
45ist durch 345=15⋅3teilbar=3⋅15
15ist durch 315=5⋅3teilbar=3⋅3⋅5
3,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=3⋅3⋅5
Primfaktorzerlegung von 90:2⋅3⋅3⋅5
90
90ist durch 290=45⋅2teilbar=2⋅45
45ist durch 345=15⋅3teilbar=2⋅3⋅15
15ist durch 315=5⋅3teilbar=2⋅3⋅3⋅5
2,3,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3⋅3⋅5
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 45 oder 90vorkommt=3⋅3⋅5⋅2
Multipliziere die Zahlen: 3⋅3⋅5⋅2=90=90
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 90
Für 453960∘−45x​:multipliziere den Nenner und Zähler mit 2453960∘−45x​=45⋅2(3960∘−45x)⋅2​=90(3960∘−45x)⋅2​
=90(3960∘−45x)⋅2​+90−180∘+90x​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=90(3960∘−45x)⋅2−180∘+90x​
Multipliziere aus (3960∘−45x)⋅2−180∘+90x:7740∘
(3960∘−45x)⋅2−180∘+90x
=2(3960∘−45x)−180∘+90x
Multipliziere aus 2(3960∘−45x):7920∘−90x
2(3960∘−45x)
Wende das Distributivgesetz an: a(b−c)=ab−aca=2,b=3960∘,c=45x=2⋅3960∘−2⋅45x
Vereinfache 2⋅3960∘−2⋅45x:7920∘−90x
2⋅3960∘−2⋅45x
Multipliziere die Zahlen: 2⋅22=44=7920∘−2⋅45x
Multipliziere die Zahlen: 2⋅45=90=7920∘−90x
=7920∘−90x
=7920∘−90x−180∘+90x
Vereinfache 7920∘−90x−180∘+90x:7740∘
7920∘−90x−180∘+90x
Fasse gleiche Terme zusammen=−90x+90x+7920∘−180∘
Addiere gleiche Elemente: −90x+90x=0=7920∘−180∘
Addiere gleiche Elemente: 7920∘−180∘=7740∘=7740∘
=7740∘
=86∘
=286∘​
Wende Bruchregel an: acb​​=c⋅ab​=90⋅27740∘​
Multipliziere die Zahlen: 90⋅2=180=43∘
=−2sin(43∘)sin(245−45x+3960∘​−9090x−180∘​​)
2453960∘−45x​−90−180∘+90x​​=4−4x+180∘​
2453960∘−45x​−90−180∘+90x​​
Füge 453960∘−45x​−90−180∘+90x​zusammen:2−4x+180∘​
453960∘−45x​−90−180∘+90x​
kleinstes gemeinsames Vielfache von45,90:90
45,90
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 45:3⋅3⋅5
45
45ist durch 345=15⋅3teilbar=3⋅15
15ist durch 315=5⋅3teilbar=3⋅3⋅5
3,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=3⋅3⋅5
Primfaktorzerlegung von 90:2⋅3⋅3⋅5
90
90ist durch 290=45⋅2teilbar=2⋅45
45ist durch 345=15⋅3teilbar=2⋅3⋅15
15ist durch 315=5⋅3teilbar=2⋅3⋅3⋅5
2,3,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅3⋅3⋅5
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 45 oder 90vorkommt=3⋅3⋅5⋅2
Multipliziere die Zahlen: 3⋅3⋅5⋅2=90=90
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 90
Für 453960∘−45x​:multipliziere den Nenner und Zähler mit 2453960∘−45x​=45⋅2(3960∘−45x)⋅2​=90(3960∘−45x)⋅2​
=90(3960∘−45x)⋅2​−90−180∘+90x​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=90(3960∘−45x)⋅2−(−180∘+90x)​
Multipliziere aus (3960∘−45x)⋅2−(−180∘+90x):−180x+8100∘
(3960∘−45x)⋅2−(−180∘+90x)
=2(3960∘−45x)−(−180∘+90x)
Multipliziere aus 2(3960∘−45x):7920∘−90x
2(3960∘−45x)
Wende das Distributivgesetz an: a(b−c)=ab−aca=2,b=3960∘,c=45x=2⋅3960∘−2⋅45x
Vereinfache 2⋅3960∘−2⋅45x:7920∘−90x
2⋅3960∘−2⋅45x
Multipliziere die Zahlen: 2⋅22=44=7920∘−2⋅45x
Multipliziere die Zahlen: 2⋅45=90=7920∘−90x
=7920∘−90x
=7920∘−90x−(−180∘+90x)
−(−180∘+90x):180∘−90x
−(−180∘+90x)
Setze Klammern=−(−180∘)−(90x)
Wende Minus-Plus Regeln an−(−a)=a,−(a)=−a=180∘−90x
=7920∘−90x+180∘−90x
Vereinfache 7920∘−90x+180∘−90x:−180x+8100∘
7920∘−90x+180∘−90x
Fasse gleiche Terme zusammen=−90x−90x+7920∘+180∘
Addiere gleiche Elemente: −90x−90x=−180x=−180x+7920∘+180∘
Addiere gleiche Elemente: 7920∘+180∘=8100∘=−180x+8100∘
=−180x+8100∘
=90−180x+8100∘​
Faktorisiere −180x+8100∘:45(−4x+180∘)
−180x+8100∘
Schreibe um=−45⋅4x+8100∘
Klammere gleiche Terme aus 45=45(−4x+180∘)
=9045(−4x+180∘)​
Streiche die gemeinsamen Faktoren: 45=2−4x+180∘​
=22−4x+180∘​​
Wende Bruchregel an: acb​​=c⋅ab​=2⋅2−4x+180∘​
Multipliziere die Zahlen: 2⋅2=4=4−4x+180∘​
=−2sin(43∘)sin(4−4x+180∘​)
=−2sin(43∘)sin(4−4x+180∘​)
−2sin(43∘)sin(4−4x+180∘​)=0
Teile beide Seiten durch −2sin(43∘)
−2sin(43∘)sin(4−4x+180∘​)=0
Teile beide Seiten durch −2sin(43∘)−2sin(43∘)−2sin(43∘)sin(4−4x+180∘​)​=−2sin(43∘)0​
Vereinfachesin(4−4x+180∘​)=0
sin(4−4x+180∘​)=0
Allgemeine Lösung für sin(4−4x+180∘​)=0
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
4−4x+180∘​=0+360∘n,4−4x+180∘​=180∘+360∘n
4−4x+180∘​=0+360∘n,4−4x+180∘​=180∘+360∘n
Löse 4−4x+180∘​=0+360∘n:x=−360∘n+45∘
4−4x+180∘​=0+360∘n
0+360∘n=360∘n4−4x+180∘​=360∘n
Multipliziere beide Seiten mit 4
4−4x+180∘​=360∘n
Multipliziere beide Seiten mit 444(−4x+180∘)​=4⋅360∘n
Vereinfache−4x+180∘=1440∘n
−4x+180∘=1440∘n
Verschiebe 180∘auf die rechte Seite
−4x+180∘=1440∘n
Subtrahiere 180∘ von beiden Seiten−4x+180∘−180∘=1440∘n−180∘
Vereinfache−4x=1440∘n−180∘
−4x=1440∘n−180∘
Teile beide Seiten durch −4
−4x=1440∘n−180∘
Teile beide Seiten durch −4−4−4x​=−41440∘n​−−4180∘​
Vereinfache
−4−4x​=−41440∘n​−−4180∘​
Vereinfache −4−4x​:x
−4−4x​
Wende Bruchregel an: −b−a​=ba​=44x​
Teile die Zahlen: 44​=1=x
Vereinfache −41440∘n​−−4180∘​:−360∘n+45∘
−41440∘n​−−4180∘​
−41440∘n​=−360∘n
−41440∘n​
Wende Bruchregel an: −ba​=−ba​=−41440∘n​
Teile die Zahlen: 48​=2=−360∘n
=−360∘n−−4180∘​
Wende Bruchregel an: −ba​=−ba​=−360∘n−(−45∘)
Wende Regel an −(−a)=a=−360∘n+45∘
x=−360∘n+45∘
x=−360∘n+45∘
x=−360∘n+45∘
Löse 4−4x+180∘​=180∘+360∘n:x=−135∘−360∘n
4−4x+180∘​=180∘+360∘n
Multipliziere beide Seiten mit 4
4−4x+180∘​=180∘+360∘n
Multipliziere beide Seiten mit 444(−4x+180∘)​=720∘+4⋅360∘n
Vereinfache−4x+180∘=720∘+1440∘n
−4x+180∘=720∘+1440∘n
Verschiebe 180∘auf die rechte Seite
−4x+180∘=720∘+1440∘n
Subtrahiere 180∘ von beiden Seiten−4x+180∘−180∘=720∘+1440∘n−180∘
Vereinfache−4x=540∘+1440∘n
−4x=540∘+1440∘n
Teile beide Seiten durch −4
−4x=540∘+1440∘n
Teile beide Seiten durch −4−4−4x​=−4540∘​+−41440∘n​
Vereinfache
−4−4x​=−4540∘​+−41440∘n​
Vereinfache −4−4x​:x
−4−4x​
Wende Bruchregel an: −b−a​=ba​=44x​
Teile die Zahlen: 44​=1=x
Vereinfache −4540∘​+−41440∘n​:−135∘−360∘n
−4540∘​+−41440∘n​
Wende Bruchregel an: −ba​=−ba​=−135∘+−41440∘n​
−41440∘n​=−360∘n
−41440∘n​
Wende Bruchregel an: −ba​=−ba​=−41440∘n​
Teile die Zahlen: 48​=2=−360∘n
=−135∘−360∘n
x=−135∘−360∘n
x=−135∘−360∘n
x=−135∘−360∘n
x=−360∘n+45∘,x=−135∘−360∘n

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

cos(x)= 2/6cos(x)=62​sec(θ)-sqrt(2)=0,0<= θ<= 2pisec(θ)−2​=0,0≤θ≤2πsin(A)-0.1*cos(A)=(6.94)/(9.8)sin(A)−0.1⋅cos(A)=9.86.94​solvefor t,s=2arctan(t)solvefort,s=2arctan(t)(cos(x))/(tan(x))= 3/2tan(x)cos(x)​=23​
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024