Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+2)=cos(x-2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+2∘)=cos(x−2∘)

Solution

x=−360∘n+45∘,x=−135∘−360∘n
+1
Radians
x=4π​−2πn,x=−43π​−2πn
Solution steps
sin(x+2∘)=cos(x−2∘)
Subtract cos(x−2∘) from both sidessin(x+2∘)−cos(x−2∘)=0
Simplify sin(x+2∘)−cos(x−2∘):sin(9090x+180∘​)−cos(9090x−180∘​)
sin(x+2∘)−cos(x−2∘)
Join x+2∘:9090x+180∘​
x+2∘
Convert element to fraction: x=90x90​=90x⋅90​+2∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90x⋅90+180∘​
=sin(9090x+180∘​)−cos(x−2∘)
Join x−2∘:9090x−180∘​
x−2∘
Convert element to fraction: x=90x90​=90x⋅90​−2∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90x⋅90−180∘​
=sin(9090x+180∘​)−cos(9090x−180∘​)
sin(9090x+180∘​)−cos(9090x−180∘​)=0
Rewrite using trig identities
−cos(90−180∘+90x​)+sin(90180∘+90x​)
Use the following identity: sin(x)=cos(90∘−x)=−cos(90−180∘+90x​)+cos(90∘−90180∘+90x​)
Join 90∘−90180∘+90x​:453960∘−45x​
90∘−90180∘+90x​
Least Common Multiplier of 2,90:90
2,90
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 90:2⋅3⋅3⋅5
90
90divides by 290=45⋅2=2⋅45
45divides by 345=15⋅3=2⋅3⋅15
15divides by 315=5⋅3=2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 90=2⋅3⋅3⋅5
Multiply the numbers: 2⋅3⋅3⋅5=90=90
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 90
For 90∘:multiply the denominator and numerator by 4590∘=2⋅45180∘45​=90∘
=90∘−90180∘+90x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90180∘45−(180∘+90x)​
Expand 180∘45−(180∘+90x):7920∘−90x
180∘45−(180∘+90x)
=8100∘−(180∘+90x)
−(180∘+90x):−180∘−90x
−(180∘+90x)
Distribute parentheses=−(180∘)−(90x)
Apply minus-plus rules+(−a)=−a=−180∘−90x
=180∘45−180∘−90x
Add similar elements: 8100∘−180∘=7920∘=7920∘−90x
=907920∘−90x​
Factor 7920∘−90x:2(3960∘−45x)
7920∘−90x
Rewrite as=2⋅3960∘−2⋅45x
Factor out common term 2=2(3960∘−45x)
=902(3960∘−45x)​
Cancel the common factor: 2=453960∘−45x​
=−cos(90−180∘+90x​)+cos(453960∘−45x​)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​)
Simplify −2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​):−2sin(43∘)sin(4−4x+180∘​)
−2sin(2453960∘−45x​+90−180∘+90x​​)sin(2453960∘−45x​−90−180∘+90x​​)
2453960∘−45x​+90−180∘+90x​​=43∘
2453960∘−45x​+90−180∘+90x​​
Join 453960∘−45x​+90−180∘+90x​:86∘
453960∘−45x​+90−180∘+90x​
Least Common Multiplier of 45,90:90
45,90
Least Common Multiplier (LCM)
Prime factorization of 45:3⋅3⋅5
45
45divides by 345=15⋅3=3⋅15
15divides by 315=5⋅3=3⋅3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅3⋅5
Prime factorization of 90:2⋅3⋅3⋅5
90
90divides by 290=45⋅2=2⋅45
45divides by 345=15⋅3=2⋅3⋅15
15divides by 315=5⋅3=2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 45 or 90=3⋅3⋅5⋅2
Multiply the numbers: 3⋅3⋅5⋅2=90=90
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 90
For 453960∘−45x​:multiply the denominator and numerator by 2453960∘−45x​=45⋅2(3960∘−45x)⋅2​=90(3960∘−45x)⋅2​
=90(3960∘−45x)⋅2​+90−180∘+90x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90(3960∘−45x)⋅2−180∘+90x​
Expand (3960∘−45x)⋅2−180∘+90x:7740∘
(3960∘−45x)⋅2−180∘+90x
=2(3960∘−45x)−180∘+90x
Expand 2(3960∘−45x):7920∘−90x
2(3960∘−45x)
Apply the distributive law: a(b−c)=ab−aca=2,b=3960∘,c=45x=2⋅3960∘−2⋅45x
Simplify 2⋅3960∘−2⋅45x:7920∘−90x
2⋅3960∘−2⋅45x
Multiply the numbers: 2⋅22=44=7920∘−2⋅45x
Multiply the numbers: 2⋅45=90=7920∘−90x
=7920∘−90x
=7920∘−90x−180∘+90x
Simplify 7920∘−90x−180∘+90x:7740∘
7920∘−90x−180∘+90x
Group like terms=−90x+90x+7920∘−180∘
Add similar elements: −90x+90x=0=7920∘−180∘
Add similar elements: 7920∘−180∘=7740∘=7740∘
=7740∘
=86∘
=286∘​
Apply the fraction rule: acb​​=c⋅ab​=90⋅27740∘​
Multiply the numbers: 90⋅2=180=43∘
=−2sin(43∘)sin(245−45x+3960∘​−9090x−180∘​​)
2453960∘−45x​−90−180∘+90x​​=4−4x+180∘​
2453960∘−45x​−90−180∘+90x​​
Join 453960∘−45x​−90−180∘+90x​:2−4x+180∘​
453960∘−45x​−90−180∘+90x​
Least Common Multiplier of 45,90:90
45,90
Least Common Multiplier (LCM)
Prime factorization of 45:3⋅3⋅5
45
45divides by 345=15⋅3=3⋅15
15divides by 315=5⋅3=3⋅3⋅5
3,5 are all prime numbers, therefore no further factorization is possible=3⋅3⋅5
Prime factorization of 90:2⋅3⋅3⋅5
90
90divides by 290=45⋅2=2⋅45
45divides by 345=15⋅3=2⋅3⋅15
15divides by 315=5⋅3=2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 45 or 90=3⋅3⋅5⋅2
Multiply the numbers: 3⋅3⋅5⋅2=90=90
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 90
For 453960∘−45x​:multiply the denominator and numerator by 2453960∘−45x​=45⋅2(3960∘−45x)⋅2​=90(3960∘−45x)⋅2​
=90(3960∘−45x)⋅2​−90−180∘+90x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90(3960∘−45x)⋅2−(−180∘+90x)​
Expand (3960∘−45x)⋅2−(−180∘+90x):−180x+8100∘
(3960∘−45x)⋅2−(−180∘+90x)
=2(3960∘−45x)−(−180∘+90x)
Expand 2(3960∘−45x):7920∘−90x
2(3960∘−45x)
Apply the distributive law: a(b−c)=ab−aca=2,b=3960∘,c=45x=2⋅3960∘−2⋅45x
Simplify 2⋅3960∘−2⋅45x:7920∘−90x
2⋅3960∘−2⋅45x
Multiply the numbers: 2⋅22=44=7920∘−2⋅45x
Multiply the numbers: 2⋅45=90=7920∘−90x
=7920∘−90x
=7920∘−90x−(−180∘+90x)
−(−180∘+90x):180∘−90x
−(−180∘+90x)
Distribute parentheses=−(−180∘)−(90x)
Apply minus-plus rules−(−a)=a,−(a)=−a=180∘−90x
=7920∘−90x+180∘−90x
Simplify 7920∘−90x+180∘−90x:−180x+8100∘
7920∘−90x+180∘−90x
Group like terms=−90x−90x+7920∘+180∘
Add similar elements: −90x−90x=−180x=−180x+7920∘+180∘
Add similar elements: 7920∘+180∘=8100∘=−180x+8100∘
=−180x+8100∘
=90−180x+8100∘​
Factor −180x+8100∘:45(−4x+180∘)
−180x+8100∘
Rewrite as=−45⋅4x+8100∘
Factor out common term 45=45(−4x+180∘)
=9045(−4x+180∘)​
Cancel the common factor: 45=2−4x+180∘​
=22−4x+180∘​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2−4x+180∘​
Multiply the numbers: 2⋅2=4=4−4x+180∘​
=−2sin(43∘)sin(4−4x+180∘​)
=−2sin(43∘)sin(4−4x+180∘​)
−2sin(43∘)sin(4−4x+180∘​)=0
Divide both sides by −2sin(43∘)
−2sin(43∘)sin(4−4x+180∘​)=0
Divide both sides by −2sin(43∘)−2sin(43∘)−2sin(43∘)sin(4−4x+180∘​)​=−2sin(43∘)0​
Simplifysin(4−4x+180∘​)=0
sin(4−4x+180∘​)=0
General solutions for sin(4−4x+180∘​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
4−4x+180∘​=0+360∘n,4−4x+180∘​=180∘+360∘n
4−4x+180∘​=0+360∘n,4−4x+180∘​=180∘+360∘n
Solve 4−4x+180∘​=0+360∘n:x=−360∘n+45∘
4−4x+180∘​=0+360∘n
0+360∘n=360∘n4−4x+180∘​=360∘n
Multiply both sides by 4
4−4x+180∘​=360∘n
Multiply both sides by 444(−4x+180∘)​=4⋅360∘n
Simplify−4x+180∘=1440∘n
−4x+180∘=1440∘n
Move 180∘to the right side
−4x+180∘=1440∘n
Subtract 180∘ from both sides−4x+180∘−180∘=1440∘n−180∘
Simplify−4x=1440∘n−180∘
−4x=1440∘n−180∘
Divide both sides by −4
−4x=1440∘n−180∘
Divide both sides by −4−4−4x​=−41440∘n​−−4180∘​
Simplify
−4−4x​=−41440∘n​−−4180∘​
Simplify −4−4x​:x
−4−4x​
Apply the fraction rule: −b−a​=ba​=44x​
Divide the numbers: 44​=1=x
Simplify −41440∘n​−−4180∘​:−360∘n+45∘
−41440∘n​−−4180∘​
−41440∘n​=−360∘n
−41440∘n​
Apply the fraction rule: −ba​=−ba​=−41440∘n​
Divide the numbers: 48​=2=−360∘n
=−360∘n−−4180∘​
Apply the fraction rule: −ba​=−ba​=−360∘n−(−45∘)
Apply rule −(−a)=a=−360∘n+45∘
x=−360∘n+45∘
x=−360∘n+45∘
x=−360∘n+45∘
Solve 4−4x+180∘​=180∘+360∘n:x=−135∘−360∘n
4−4x+180∘​=180∘+360∘n
Multiply both sides by 4
4−4x+180∘​=180∘+360∘n
Multiply both sides by 444(−4x+180∘)​=720∘+4⋅360∘n
Simplify−4x+180∘=720∘+1440∘n
−4x+180∘=720∘+1440∘n
Move 180∘to the right side
−4x+180∘=720∘+1440∘n
Subtract 180∘ from both sides−4x+180∘−180∘=720∘+1440∘n−180∘
Simplify−4x=540∘+1440∘n
−4x=540∘+1440∘n
Divide both sides by −4
−4x=540∘+1440∘n
Divide both sides by −4−4−4x​=−4540∘​+−41440∘n​
Simplify
−4−4x​=−4540∘​+−41440∘n​
Simplify −4−4x​:x
−4−4x​
Apply the fraction rule: −b−a​=ba​=44x​
Divide the numbers: 44​=1=x
Simplify −4540∘​+−41440∘n​:−135∘−360∘n
−4540∘​+−41440∘n​
Apply the fraction rule: −ba​=−ba​=−135∘+−41440∘n​
−41440∘n​=−360∘n
−41440∘n​
Apply the fraction rule: −ba​=−ba​=−41440∘n​
Divide the numbers: 48​=2=−360∘n
=−135∘−360∘n
x=−135∘−360∘n
x=−135∘−360∘n
x=−135∘−360∘n
x=−360∘n+45∘,x=−135∘−360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 2/6sec(θ)-sqrt(2)=0,0<= θ<= 2pisin(A)-0.1*cos(A)=(6.94)/(9.8)solvefor t,s=2arctan(t)(cos(x))/(tan(x))= 3/2

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+2)=cos(x-2) ?

    The general solution for sin(x+2)=cos(x-2) is x=-360n+45,x=-135-360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024