Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(θ/2)=cos(θ/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(2θ​)=cos(2θ​)

Solution

θ=4πn,θ=2π+4πn
+1
Degrees
θ=0∘+720∘n,θ=360∘+720∘n
Solution steps
sec(2θ​)=cos(2θ​)
Subtract cos(2θ​) from both sidessec(2θ​)−cos(2θ​)=0
Rewrite using trig identities
−cos(2θ​)+sec(2θ​)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−sec(2θ​)1​+sec(2θ​)
−sec(2θ​)1​+sec(2θ​)=0
Solve by substitution
−sec(2θ​)1​+sec(2θ​)=0
Let: sec(2θ​)=u−u1​+u=0
−u1​+u=0:u=1,u=−1
−u1​+u=0
Multiply both sides by u
−u1​+u=0
Multiply both sides by u−u1​u+uu=0⋅u
Simplify
−u1​u+uu=0⋅u
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−1+u2=0
−1+u2=0
−1+u2=0
Solve −1+u2=0:u=1,u=−1
−1+u2=0
Move 1to the right side
−1+u2=0
Add 1 to both sides−1+u2+1=0+1
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −u1​+u and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
Substitute back u=sec(2θ​)sec(2θ​)=1,sec(2θ​)=−1
sec(2θ​)=1,sec(2θ​)=−1
sec(2θ​)=1:θ=4πn
sec(2θ​)=1
General solutions for sec(2θ​)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
2θ​=0+2πn
2θ​=0+2πn
Solve 2θ​=0+2πn:θ=4πn
2θ​=0+2πn
0+2πn=2πn2θ​=2πn
Multiply both sides by 2
2θ​=2πn
Multiply both sides by 222θ​=2⋅2πn
Simplifyθ=4πn
θ=4πn
θ=4πn
sec(2θ​)=−1:θ=2π+4πn
sec(2θ​)=−1
General solutions for sec(2θ​)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
2θ​=π+2πn
2θ​=π+2πn
Solve 2θ​=π+2πn:θ=2π+4πn
2θ​=π+2πn
Multiply both sides by 2
2θ​=π+2πn
Multiply both sides by 222θ​=2π+2⋅2πn
Simplifyθ=2π+4πn
θ=2π+4πn
θ=2π+4πn
Combine all the solutionsθ=4πn,θ=2π+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)-1.28=0cos^3(3θ)= 1/4sin(x-pi/4)= 1/23sin(2x)-3/2 sqrt(3)=0sin^2(θ)-1/4 =0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(θ/2)=cos(θ/2) ?

    The general solution for sec(θ/2)=cos(θ/2) is θ=4pin,θ=2pi+4pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024