Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sqrt(2)sin(v)+3sqrt(2)cos(v)=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

32​sin(v)+32​cos(v)=3

Solution

v=1.83259…+2πn,v=2π−0.26179…+2πn
+1
Degrees
v=105∘+360∘n,v=345∘+360∘n
Solution steps
32​sin(v)+32​cos(v)=3
Subtract 32​cos(v) from both sides32​sin(v)=3−32​cos(v)
Square both sides(32​sin(v))2=(3−32​cos(v))2
Subtract (3−32​cos(v))2 from both sides18sin2(v)−9+182​cos(v)−18cos2(v)=0
Rewrite using trig identities
−9−18cos2(v)+18sin2(v)+18cos(v)2​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−9−18cos2(v)+18(1−cos2(v))+18cos(v)2​
Simplify −9−18cos2(v)+18(1−cos2(v))+18cos(v)2​:182​cos(v)−36cos2(v)+9
−9−18cos2(v)+18(1−cos2(v))+18cos(v)2​
=−9−18cos2(v)+18(1−cos2(v))+182​cos(v)
Expand 18(1−cos2(v)):18−18cos2(v)
18(1−cos2(v))
Apply the distributive law: a(b−c)=ab−aca=18,b=1,c=cos2(v)=18⋅1−18cos2(v)
Multiply the numbers: 18⋅1=18=18−18cos2(v)
=−9−18cos2(v)+18−18cos2(v)+18cos(v)2​
Simplify −9−18cos2(v)+18−18cos2(v)+18cos(v)2​:182​cos(v)−36cos2(v)+9
−9−18cos2(v)+18−18cos2(v)+18cos(v)2​
Group like terms=−18cos2(v)−18cos2(v)+182​cos(v)−9+18
Add similar elements: −18cos2(v)−18cos2(v)=−36cos2(v)=−36cos2(v)+182​cos(v)−9+18
Add/Subtract the numbers: −9+18=9=182​cos(v)−36cos2(v)+9
=182​cos(v)−36cos2(v)+9
=182​cos(v)−36cos2(v)+9
9−36cos2(v)+18cos(v)2​=0
Solve by substitution
9−36cos2(v)+18cos(v)2​=0
Let: cos(v)=u9−36u2+18u2​=0
9−36u2+18u2​=0:u=−4−2​+6​​,u=42​+6​​
9−36u2+18u2​=0
Write in the standard form ax2+bx+c=0−36u2+182​u+9=0
Solve with the quadratic formula
−36u2+182​u+9=0
Quadratic Equation Formula:
For a=−36,b=182​,c=9u1,2​=2(−36)−182​±(182​)2−4(−36)⋅9​​
u1,2​=2(−36)−182​±(182​)2−4(−36)⋅9​​
(182​)2−4(−36)⋅9​=186​
(182​)2−4(−36)⋅9​
Apply rule −(−a)=a=(182​)2+4⋅36⋅9​
(182​)2=182⋅2
(182​)2
Apply exponent rule: (a⋅b)n=anbn=182(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=182⋅2
4⋅36⋅9=1296
4⋅36⋅9
Multiply the numbers: 4⋅36⋅9=1296=1296
=182⋅2+1296​
182⋅2=648
182⋅2
182=324=324⋅2
Multiply the numbers: 324⋅2=648=648
=648+1296​
Add the numbers: 648+1296=1944=1944​
Prime factorization of 1944:23⋅35
1944
1944divides by 21944=972⋅2=2⋅972
972divides by 2972=486⋅2=2⋅2⋅486
486divides by 2486=243⋅2=2⋅2⋅2⋅243
243divides by 3243=81⋅3=2⋅2⋅2⋅3⋅81
81divides by 381=27⋅3=2⋅2⋅2⋅3⋅3⋅27
27divides by 327=9⋅3=2⋅2⋅2⋅3⋅3⋅3⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅3⋅3⋅3⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3⋅3⋅3⋅3
=23⋅35
=35⋅23​
Apply exponent rule: ab+c=ab⋅ac=34⋅22⋅2⋅3​
Apply radical rule: =22​34​2⋅3​
Apply radical rule: 22​=2=234​2⋅3​
Apply radical rule: 34​=324​=32=32⋅22⋅3​
Refine=186​
u1,2​=2(−36)−182​±186​​
Separate the solutionsu1​=2(−36)−182​+186​​,u2​=2(−36)−182​−186​​
u=2(−36)−182​+186​​:−4−2​+6​​
2(−36)−182​+186​​
Remove parentheses: (−a)=−a=−2⋅36−182​+186​​
Multiply the numbers: 2⋅36=72=−72−182​+186​​
Apply the fraction rule: −ba​=−ba​=−72−182​+186​​
Cancel 72−182​+186​​:46​−2​​
72−182​+186​​
Factor out common term 18=7218(−2​+6​)​
Cancel the common factor: 18=4−2​+6​​
=−46​−2​​
=−4−2​+6​​
u=2(−36)−182​−186​​:42​+6​​
2(−36)−182​−186​​
Remove parentheses: (−a)=−a=−2⋅36−182​−186​​
Multiply the numbers: 2⋅36=72=−72−182​−186​​
Apply the fraction rule: −b−a​=ba​−182​−186​=−(182​+186​)=72182​+186​​
Factor out common term 18=7218(2​+6​)​
Cancel the common factor: 18=42​+6​​
The solutions to the quadratic equation are:u=−4−2​+6​​,u=42​+6​​
Substitute back u=cos(v)cos(v)=−4−2​+6​​,cos(v)=42​+6​​
cos(v)=−4−2​+6​​,cos(v)=42​+6​​
cos(v)=−4−2​+6​​:v=arccos(−4−2​+6​​)+2πn,v=−arccos(−4−2​+6​​)+2πn
cos(v)=−4−2​+6​​
Apply trig inverse properties
cos(v)=−4−2​+6​​
General solutions for cos(v)=−4−2​+6​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnv=arccos(−4−2​+6​​)+2πn,v=−arccos(−4−2​+6​​)+2πn
v=arccos(−4−2​+6​​)+2πn,v=−arccos(−4−2​+6​​)+2πn
cos(v)=42​+6​​:v=arccos(42​+6​​)+2πn,v=2π−arccos(42​+6​​)+2πn
cos(v)=42​+6​​
Apply trig inverse properties
cos(v)=42​+6​​
General solutions for cos(v)=42​+6​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnv=arccos(42​+6​​)+2πn,v=2π−arccos(42​+6​​)+2πn
v=arccos(42​+6​​)+2πn,v=2π−arccos(42​+6​​)+2πn
Combine all the solutionsv=arccos(−4−2​+6​​)+2πn,v=−arccos(−4−2​+6​​)+2πn,v=arccos(42​+6​​)+2πn,v=2π−arccos(42​+6​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 32​sin(v)+32​cos(v)=3
Remove the ones that don't agree with the equation.
Check the solution arccos(−4−2​+6​​)+2πn:True
arccos(−4−2​+6​​)+2πn
Plug in n=1arccos(−4−2​+6​​)+2π1
For 32​sin(v)+32​cos(v)=3plug inv=arccos(−4−2​+6​​)+2π132​sin(arccos(−4−2​+6​​)+2π1)+32​cos(arccos(−4−2​+6​​)+2π1)=3
Refine3=3
⇒True
Check the solution −arccos(−4−2​+6​​)+2πn:False
−arccos(−4−2​+6​​)+2πn
Plug in n=1−arccos(−4−2​+6​​)+2π1
For 32​sin(v)+32​cos(v)=3plug inv=−arccos(−4−2​+6​​)+2π132​sin(−arccos(−4−2​+6​​)+2π1)+32​cos(−arccos(−4−2​+6​​)+2π1)=3
Refine−5.19615…=3
⇒False
Check the solution arccos(42​+6​​)+2πn:False
arccos(42​+6​​)+2πn
Plug in n=1arccos(42​+6​​)+2π1
For 32​sin(v)+32​cos(v)=3plug inv=arccos(42​+6​​)+2π132​sin(arccos(42​+6​​)+2π1)+32​cos(arccos(42​+6​​)+2π1)=3
Refine5.19615…=3
⇒False
Check the solution 2π−arccos(42​+6​​)+2πn:True
2π−arccos(42​+6​​)+2πn
Plug in n=12π−arccos(42​+6​​)+2π1
For 32​sin(v)+32​cos(v)=3plug inv=2π−arccos(42​+6​​)+2π132​sin(2π−arccos(42​+6​​)+2π1)+32​cos(2π−arccos(42​+6​​)+2π1)=3
Refine3=3
⇒True
v=arccos(−4−2​+6​​)+2πn,v=2π−arccos(42​+6​​)+2πn
Show solutions in decimal formv=1.83259…+2πn,v=2π−0.26179…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin(x)+5cos(x)=6(sqrt(3))/2 cos(x)+1/2 sin(x)= 1/2cos(x)=(-4)/53cot(3/2)+2csc(x/2)=0,0<= ,x<= 360cos(x)=sqrt(2)cos(45+x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sqrt(2)sin(v)+3sqrt(2)cos(v)=3 ?

    The general solution for 3sqrt(2)sin(v)+3sqrt(2)cos(v)=3 is v=1.83259…+2pin,v=2pi-0.26179…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024