Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sqrt(3))/2 cos(x)+1/2 sin(x)= 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

23​​cos(x)+21​sin(x)=21​

Solution

x=611π​+2πn,x=2π​+2πn
+1
Degrees
x=330∘+360∘n,x=90∘+360∘n
Solution steps
23​​cos(x)+21​sin(x)=21​
Subtract 21​sin(x) from both sides23​​cos(x)=21​−21​sin(x)
Square both sides(23​​cos(x))2=(21​−21​sin(x))2
Subtract (21​−21​sin(x))2 from both sides43​cos2(x)−41​+21​sin(x)−41​sin2(x)=0
Simplify 43​cos2(x)−41​+21​sin(x)−41​sin2(x):43cos2(x)−1−sin2(x)+2sin(x)​
43​cos2(x)−41​+21​sin(x)−41​sin2(x)
43​cos2(x)=43cos2(x)​
43​cos2(x)
Multiply fractions: a⋅cb​=ca⋅b​=43cos2(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
41​sin2(x)=4sin2(x)​
41​sin2(x)
Multiply fractions: a⋅cb​=ca⋅b​=41⋅sin2(x)​
Multiply: 1⋅sin2(x)=sin2(x)=4sin2(x)​
=43cos2(x)​−41​+2sin(x)​−4sin2(x)​
Combine the fractions 43cos2(x)​−41​−4sin2(x)​:43cos2(x)−1−sin2(x)​
Apply rule ca​±cb​=ca±b​=43cos2(x)−1−sin2(x)​
=43cos2(x)−sin2(x)−1​+2sin(x)​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2sin(x)​:multiply the denominator and numerator by 22sin(x)​=2⋅2sin(x)⋅2​=4sin(x)⋅2​
=43cos2(x)−1−sin2(x)​+4sin(x)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=43cos2(x)−1−sin2(x)+sin(x)⋅2​
43cos2(x)−1−sin2(x)+2sin(x)​=0
g(x)f(x)​=0⇒f(x)=03cos2(x)−1−sin2(x)+2sin(x)=0
Rewrite using trig identities
−1−sin2(x)+2sin(x)+3cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1−sin2(x)+2sin(x)+3(1−sin2(x))
Simplify −1−sin2(x)+2sin(x)+3(1−sin2(x)):2sin(x)−4sin2(x)+2
−1−sin2(x)+2sin(x)+3(1−sin2(x))
Expand 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
Multiply the numbers: 3⋅1=3=3−3sin2(x)
=−1−sin2(x)+2sin(x)+3−3sin2(x)
Simplify −1−sin2(x)+2sin(x)+3−3sin2(x):2sin(x)−4sin2(x)+2
−1−sin2(x)+2sin(x)+3−3sin2(x)
Group like terms=−sin2(x)+2sin(x)−3sin2(x)−1+3
Add similar elements: −sin2(x)−3sin2(x)=−4sin2(x)=−4sin2(x)+2sin(x)−1+3
Add/Subtract the numbers: −1+3=2=2sin(x)−4sin2(x)+2
=2sin(x)−4sin2(x)+2
=2sin(x)−4sin2(x)+2
2+2sin(x)−4sin2(x)=0
Solve by substitution
2+2sin(x)−4sin2(x)=0
Let: sin(x)=u2+2u−4u2=0
2+2u−4u2=0:u=−21​,u=1
2+2u−4u2=0
Write in the standard form ax2+bx+c=0−4u2+2u+2=0
Solve with the quadratic formula
−4u2+2u+2=0
Quadratic Equation Formula:
For a=−4,b=2,c=2u1,2​=2(−4)−2±22−4(−4)⋅2​​
u1,2​=2(−4)−2±22−4(−4)⋅2​​
22−4(−4)⋅2​=6
22−4(−4)⋅2​
Apply rule −(−a)=a=22+4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=22+32​
22=4=4+32​
Add the numbers: 4+32=36=36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
u1,2​=2(−4)−2±6​
Separate the solutionsu1​=2(−4)−2+6​,u2​=2(−4)−2−6​
u=2(−4)−2+6​:−21​
2(−4)−2+6​
Remove parentheses: (−a)=−a=−2⋅4−2+6​
Add/Subtract the numbers: −2+6=4=−2⋅44​
Multiply the numbers: 2⋅4=8=−84​
Apply the fraction rule: −ba​=−ba​=−84​
Cancel the common factor: 4=−21​
u=2(−4)−2−6​:1
2(−4)−2−6​
Remove parentheses: (−a)=−a=−2⋅4−2−6​
Subtract the numbers: −2−6=−8=−2⋅4−8​
Multiply the numbers: 2⋅4=8=−8−8​
Apply the fraction rule: −b−a​=ba​=88​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=−21​,u=1
Substitute back u=sin(x)sin(x)=−21​,sin(x)=1
sin(x)=−21​,sin(x)=1
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=67π​+2πn,x=611π​+2πn,x=2π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 23​​cos(x)+21​sin(x)=21​
Remove the ones that don't agree with the equation.
Check the solution 67π​+2πn:False
67π​+2πn
Plug in n=167π​+2π1
For 23​​cos(x)+21​sin(x)=21​plug inx=67π​+2π123​​cos(67π​+2π1)+21​sin(67π​+2π1)=21​
Refine−1=0.5
⇒False
Check the solution 611π​+2πn:True
611π​+2πn
Plug in n=1611π​+2π1
For 23​​cos(x)+21​sin(x)=21​plug inx=611π​+2π123​​cos(611π​+2π1)+21​sin(611π​+2π1)=21​
Refine0.5=0.5
⇒True
Check the solution 2π​+2πn:True
2π​+2πn
Plug in n=12π​+2π1
For 23​​cos(x)+21​sin(x)=21​plug inx=2π​+2π123​​cos(2π​+2π1)+21​sin(2π​+2π1)=21​
Refine0.5=0.5
⇒True
x=611π​+2πn,x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=(-4)/53cot(3/2)+2csc(x/2)=0,0<= ,x<= 360cos(x)=sqrt(2)cos(45+x)2sin(θ)=1.124cos(θ)=-0.11

Frequently Asked Questions (FAQ)

  • What is the general solution for (sqrt(3))/2 cos(x)+1/2 sin(x)= 1/2 ?

    The general solution for (sqrt(3))/2 cos(x)+1/2 sin(x)= 1/2 is x=(11pi)/6+2pin,x= pi/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024