Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(x)tan(x)=2sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)tan(x)=23​

Solution

x=3π​+2πn,x=32π​+2πn
+1
Degrees
x=60∘+360∘n,x=120∘+360∘n
Solution steps
sec(x)tan(x)=23​
Subtract 23​ from both sidessec(x)tan(x)−23​=0
Express with sin, cos
−23​+sec(x)tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−23​+cos(x)1​tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−23​+cos(x)1​⋅cos(x)sin(x)​
Simplify −23​+cos(x)1​⋅cos(x)sin(x)​:cos2(x)−23​cos2(x)+sin(x)​
−23​+cos(x)1​⋅cos(x)sin(x)​
cos(x)1​⋅cos(x)sin(x)​=cos2(x)sin(x)​
cos(x)1​⋅cos(x)sin(x)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=cos(x)cos(x)1⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=cos(x)cos(x)sin(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos2(x)sin(x)​
=−23​+cos2(x)sin(x)​
Convert element to fraction: 23​=cos2(x)2⋅3​cos2(x)​=−cos2(x)23​cos2(x)​+cos2(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)−23​cos2(x)+sin(x)​
=cos2(x)−23​cos2(x)+sin(x)​
cos2(x)sin(x)−2cos2(x)3​​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−2cos2(x)3​=0
Rewrite using trig identities
sin(x)−2cos2(x)3​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin(x)−2(1−sin2(x))3​
sin(x)−(1−sin2(x))⋅23​=0
Solve by substitution
sin(x)−(1−sin2(x))⋅23​=0
Let: sin(x)=uu−(1−u2)⋅23​=0
u−(1−u2)⋅23​=0:u=23​​,u=−323​​
u−(1−u2)⋅23​=0
Expand u−(1−u2)⋅23​:u−23​+23​u2
u−(1−u2)⋅23​
=u−23​(1−u2)
Expand −23​(1−u2):−23​+23​u2
−23​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−23​,b=1,c=u2=−23​⋅1−(−23​)u2
Apply minus-plus rules−(−a)=a=−2⋅1⋅3​+23​u2
Multiply the numbers: 2⋅1=2=−23​+23​u2
=u−23​+23​u2
u−23​+23​u2=0
Write in the standard form ax2+bx+c=023​u2+u−23​=0
Solve with the quadratic formula
23​u2+u−23​=0
Quadratic Equation Formula:
For a=23​,b=1,c=−23​u1,2​=2⋅23​−1±12−4⋅23​(−23​)​​
u1,2​=2⋅23​−1±12−4⋅23​(−23​)​​
12−4⋅23​(−23​)​=7
12−4⋅23​(−23​)​
Apply rule 1a=112=1=1−4⋅23​(−23​)​
Apply rule −(−a)=a=1+4⋅23​⋅23​​
4⋅23​⋅23​=48
4⋅23​⋅23​
Multiply the numbers: 4⋅2⋅2=16=163​3​
Apply radical rule: a​a​=a3​3​=3=16⋅3
Multiply the numbers: 16⋅3=48=48
=1+48​
Add the numbers: 1+48=49=49​
Factor the number: 49=72=72​
Apply radical rule: nan​=a72​=7=7
u1,2​=2⋅23​−1±7​
Separate the solutionsu1​=2⋅23​−1+7​,u2​=2⋅23​−1−7​
u=2⋅23​−1+7​:23​​
2⋅23​−1+7​
Add/Subtract the numbers: −1+7=6=2⋅23​6​
Multiply the numbers: 2⋅2=4=43​6​
Cancel the common factor: 2=23​3​
Apply radical rule: na​=an1​3​=321​=2⋅321​3​
Apply exponent rule: xbxa​=xa−b321​31​=31−21​=231−21​​
Subtract the numbers: 1−21​=21​=2321​​
Apply radical rule: an1​=na​321​=3​=23​​
u=2⋅23​−1−7​:−323​​
2⋅23​−1−7​
Subtract the numbers: −1−7=−8=2⋅23​−8​
Multiply the numbers: 2⋅2=4=43​−8​
Apply the fraction rule: b−a​=−ba​=−43​8​
Divide the numbers: 48​=2=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
The solutions to the quadratic equation are:u=23​​,u=−323​​
Substitute back u=sin(x)sin(x)=23​​,sin(x)=−323​​
sin(x)=23​​,sin(x)=−323​​
sin(x)=23​​:x=3π​+2πn,x=32π​+2πn
sin(x)=23​​
General solutions for sin(x)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
sin(x)=−323​​:No Solution
sin(x)=−323​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=3π​+2πn,x=32π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x+60)=0cos(θ)=0.6596-1=tan(x+pi/(18))cos(x+60)=-sin(x)sin(40+x)=cos(5x+10)

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(x)tan(x)=2sqrt(3) ?

    The general solution for sec(x)tan(x)=2sqrt(3) is x= pi/3+2pin,x=(2pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024