Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x+60)=-sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x+60∘)=−sin(x)

Solution

x=−1.30899…+180∘n
+1
Radians
x=−1.30899…+πn
Solution steps
cos(x+60∘)=−sin(x)
Rewrite using trig identities
cos(x+60∘)=−sin(x)
Rewrite using trig identities
cos(x+60∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(60∘)−sin(x)sin(60∘)
Simplify cos(x)cos(60∘)−sin(x)sin(60∘):21​cos(x)−23​​sin(x)
cos(x)cos(60∘)−sin(x)sin(60∘)
Simplify cos(60∘):21​
cos(60∘)
Use the following trivial identity:cos(60∘)=21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=21​cos(x)−sin(60∘)sin(x)
Simplify sin(60∘):23​​
sin(60∘)
Use the following trivial identity:sin(60∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=21​cos(x)−23​​sin(x)
=21​cos(x)−23​​sin(x)
21​cos(x)−23​​sin(x)=−sin(x)
21​cos(x)−23​​sin(x)=−sin(x)
Subtract −sin(x) from both sides21​cos(x)+2−3​+2​sin(x)=0
Simplify 21​cos(x)+2−3​+2​sin(x):2cos(x)+(−3​+2)sin(x)​
21​cos(x)+2−3​+2​sin(x)
21​cos(x)=2cos(x)​
21​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=2cos(x)​
2−3​+2​sin(x)=2(−3​+2)sin(x)​
2−3​+2​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=2(−3​+2)sin(x)​
=2cos(x)​+2(2−3​)sin(x)​
Apply rule ca​±cb​=ca±b​=2cos(x)+(2−3​)sin(x)​
2cos(x)+(−3​+2)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0cos(x)+(−3​+2)sin(x)=0
Rewrite using trig identities
cos(x)+(−3​+2)sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+(−3​+2)sin(x)​=cos(x)0​
Simplify1−cos(x)3​sin(x)​+cos(x)2sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+(2−3​)tan(x)=0
1+(2−3​)tan(x)=0
Move 1to the right side
1+(2−3​)tan(x)=0
Subtract 1 from both sides1+(2−3​)tan(x)−1=0−1
Simplify(2−3​)tan(x)=−1
(2−3​)tan(x)=−1
Divide both sides by 2−3​
(2−3​)tan(x)=−1
Divide both sides by 2−3​2−3​(2−3​)tan(x)​=2−3​−1​
Simplify
2−3​(2−3​)tan(x)​=2−3​−1​
Simplify 2−3​(2−3​)tan(x)​:tan(x)
2−3​(2−3​)tan(x)​
Cancel the common factor: 2−3​=tan(x)
Simplify 2−3​−1​:−2−3​
2−3​−1​
Apply the fraction rule: b−a​=−ba​=−2−3​1​
Rationalize −2−3​1​:−2−3​
−2−3​1​
Multiply by the conjugate 2+3​2+3​​=−(2−3​)(2+3​)1⋅(2+3​)​
1⋅(2+3​)=2+3​
(2−3​)(2+3​)=1
(2−3​)(2+3​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=2,b=3​=22−(3​)2
Simplify 22−(3​)2:1
22−(3​)2
22=4
22
22=4=4
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=4−3
Subtract the numbers: 4−3=1=1
=1
=−12+3​​
Apply rule 1a​=a=−(2+3​)
Distribute parentheses=−(2)−(3​)
Apply minus-plus rules+(−a)=−a=−2−3​
=−2−3​
tan(x)=−2−3​
tan(x)=−2−3​
tan(x)=−2−3​
Apply trig inverse properties
tan(x)=−2−3​
General solutions for tan(x)=−2−3​tan(x)=−a⇒x=arctan(−a)+180∘nx=arctan(−2−3​)+180∘n
x=arctan(−2−3​)+180∘n
Show solutions in decimal formx=−1.30899…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(40+x)=cos(5x+10)cos(a)= 5/8tan(θ)sin^2(θ)=tan(θ)cos(θ)= 5/8cot(θ)+sqrt(3)=0,0<= θ<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x+60)=-sin(x) ?

    The general solution for cos(x+60)=-sin(x) is x=-1.30899…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024