Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(40+x)=cos(5x+10)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(40∘+x)=cos(5x+10)

Solution

x=1086480∘n+900∘−180​,x=−72900∘+6480∘n+180​
+1
Radians
x=1085π​−35​+10836π​n,x=−25​−725π​−7236π​n
Solution steps
sin(40∘+x)=cos(5x+10)
Rewrite using trig identities
sin(40∘+x)=cos(5x+10)
Use the following identity: cos(x)=sin(90∘−x)sin(40∘+x)=sin(90∘−(5x+10))
sin(40∘+x)=sin(90∘−(5x+10))
Apply trig inverse properties
sin(40∘+x)=sin(90∘−(5x+10))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn40∘+x=90∘−(5x+10)+360∘n,40∘+x=180∘−(90∘−(5x+10))+360∘n
40∘+x=90∘−(5x+10)+360∘n,40∘+x=180∘−(90∘−(5x+10))+360∘n
40∘+x=90∘−(5x+10)+360∘n:x=1086480∘n+900∘−180​
40∘+x=90∘−(5x+10)+360∘n
Expand 90∘−(5x+10)+360∘n:90∘−5x−10+360∘n
90∘−(5x+10)+360∘n
−(5x+10):−5x−10
−(5x+10)
Distribute parentheses=−(5x)−(10)
Apply minus-plus rules+(−a)=−a=−5x−10
=90∘−5x−10+360∘n
40∘+x=90∘−5x−10+360∘n
Move 40∘to the right side
40∘+x=90∘−5x−10+360∘n
Subtract 40∘ from both sides40∘+x−40∘=90∘−5x−10+360∘n−40∘
Simplify
40∘+x−40∘=90∘−5x−10+360∘n−40∘
Simplify 40∘+x−40∘:x
40∘+x−40∘
Add similar elements: 40∘−40∘=0
=x
Simplify 90∘−5x−10+360∘n−40∘:−5x+360∘n+50∘−10
90∘−5x−10+360∘n−40∘
Group like terms=−5x+360∘n+90∘−40∘−10
Combine the fractions 90∘−40∘:50∘
90∘−40∘
Least Common Multiplier of 2,9:18
2,9
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
For 40∘:multiply the denominator and numerator by 240∘=9⋅2360∘2​=40∘
=90∘−40∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘9−720∘​
Add similar elements: 1620∘−720∘=900∘=50∘
=−5x+360∘n+50∘−10
x=−5x+360∘n+50∘−10
x=−5x+360∘n+50∘−10
x=−5x+360∘n+50∘−10
Move 5xto the left side
x=−5x+360∘n+50∘−10
Add 5x to both sidesx+5x=−5x+360∘n+50∘−10+5x
Simplify6x=360∘n+50∘−10
6x=360∘n+50∘−10
Divide both sides by 6
6x=360∘n+50∘−10
Divide both sides by 666x​=6360∘n​+650∘​−610​
Simplify
66x​=6360∘n​+650∘​−610​
Simplify 66x​:x
66x​
Divide the numbers: 66​=1=x
Simplify 6360∘n​+650∘​−610​:1086480∘n+900∘−180​
6360∘n​+650∘​−610​
Apply rule ca​±cb​=ca±b​=6360∘n+50∘−10​
Join 360∘n+50∘−10:186480∘n+900∘−180​
360∘n+50∘−10
Convert element to fraction: 360∘n=18360∘n18​,10=1810⋅18​=18360∘n⋅18​+50∘−1810⋅18​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18360∘n⋅18+900∘−10⋅18​
360∘n⋅18+900∘−10⋅18=6480∘n+900∘−180
360∘n⋅18+900∘−10⋅18
Multiply the numbers: 2⋅18=36=6480∘n+900∘−10⋅18
Multiply the numbers: 10⋅18=180=6480∘n+900∘−180
=186480∘n+900∘−180​
=6186480∘n+900∘−180​​
Apply the fraction rule: acb​​=c⋅ab​=18⋅66480∘n+900∘−180​
Multiply the numbers: 18⋅6=108=1086480∘n+900∘−180​
x=1086480∘n+900∘−180​
x=1086480∘n+900∘−180​
x=1086480∘n+900∘−180​
40∘+x=180∘−(90∘−(5x+10))+360∘n:x=−72900∘+6480∘n+180​
40∘+x=180∘−(90∘−(5x+10))+360∘n
Expand 180∘−(90∘−(5x+10))+360∘n:180∘−90∘+5x+10+360∘n
180∘−(90∘−(5x+10))+360∘n
−(5x+10):−5x−10
−(5x+10)
Distribute parentheses=−(5x)−(10)
Apply minus-plus rules+(−a)=−a=−5x−10
=180∘−(−5x+90∘−10)+360∘n
−(90∘−5x−10):−90∘+5x+10
−(90∘−5x−10)
Distribute parentheses=−(90∘)−(−5x)−(−10)
Apply minus-plus rules−(−a)=a,−(a)=−a=−90∘+5x+10
=180∘−90∘+5x+10+360∘n
40∘+x=180∘−90∘+5x+10+360∘n
Move 40∘to the right side
40∘+x=180∘−90∘+5x+10+360∘n
Subtract 40∘ from both sides40∘+x−40∘=180∘−90∘+5x+10+360∘n−40∘
Simplify
40∘+x−40∘=180∘−90∘+5x+10+360∘n−40∘
Simplify 40∘+x−40∘:x
40∘+x−40∘
Add similar elements: 40∘−40∘=0
=x
Simplify 180∘−90∘+5x+10+360∘n−40∘:5x+180∘+360∘n−130∘+10
180∘−90∘+5x+10+360∘n−40∘
Group like terms=5x+180∘+360∘n−90∘−40∘+10
Combine the fractions −90∘−40∘:−130∘
−90∘−40∘
Least Common Multiplier of 2,9:18
2,9
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
For 40∘:multiply the denominator and numerator by 240∘=9⋅2360∘2​=40∘
=−90∘−40∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18−180∘9−720∘​
Add similar elements: −1620∘−720∘=−2340∘=18−2340∘​
Apply the fraction rule: b−a​=−ba​=−130∘
=5x+180∘+360∘n−130∘+10
x=5x+180∘+360∘n−130∘+10
x=5x+180∘+360∘n−130∘+10
x=5x+180∘+360∘n−130∘+10
Move 5xto the left side
x=5x+180∘+360∘n−130∘+10
Subtract 5x from both sidesx−5x=5x+180∘+360∘n−130∘+10−5x
Simplify−4x=180∘+360∘n−130∘+10
−4x=180∘+360∘n−130∘+10
Divide both sides by −4
−4x=180∘+360∘n−130∘+10
Divide both sides by −4−4−4x​=−4180∘​+−4360∘n​−−4130∘​+−410​
Simplify
−4−4x​=−4180∘​+−4360∘n​−−4130∘​+−410​
Simplify −4−4x​:x
−4−4x​
Apply the fraction rule: −b−a​=ba​=44x​
Divide the numbers: 44​=1=x
Simplify −4180∘​+−4360∘n​−−4130∘​+−410​:−72900∘+6480∘n+180​
−4180∘​+−4360∘n​−−4130∘​+−410​
Group like terms=−4180∘​+−410​+−4360∘n​−−4130∘​
Apply rule ca​±cb​=ca±b​=−4180∘+10+360∘n−130∘​
Apply the fraction rule: −ba​=−ba​=−4180∘+10+360∘n−130∘​
Join 180∘+10+360∘n−130∘:18900∘+6480∘n+180​
180∘+10+360∘n−130∘
Convert element to fraction: 180∘=180∘,10=1810⋅18​,360∘n=18360∘n18​=180∘+1810⋅18​+18360∘n⋅18​−130∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘18+10⋅18+360∘n⋅18−2340∘​
180∘18+10⋅18+360∘n⋅18−2340∘=900∘+6480∘n+180
180∘18+10⋅18+360∘n⋅18−2340∘
Group like terms=3240∘−2340∘+2⋅3240∘n+10⋅18
Add similar elements: 3240∘−2340∘=900∘=900∘+2⋅3240∘n+10⋅18
Multiply the numbers: 2⋅18=36=900∘+6480∘n+10⋅18
Multiply the numbers: 10⋅18=180=900∘+6480∘n+180
=18900∘+6480∘n+180​
=−418900∘+6480∘n+180​​
Simplify 418900∘+6480∘n+180​​:72900∘+6480∘n+180​
418900∘+6480∘n+180​​
Apply the fraction rule: acb​​=c⋅ab​=18⋅4900∘+6480∘n+180​
Multiply the numbers: 18⋅4=72=72900∘+6480∘n+180​
=−72900∘+6480∘n+180​
x=−72900∘+6480∘n+180​
x=−72900∘+6480∘n+180​
x=−72900∘+6480∘n+180​
x=1086480∘n+900∘−180​,x=−72900∘+6480∘n+180​
x=1086480∘n+900∘−180​,x=−72900∘+6480∘n+180​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)= 5/8tan(θ)sin^2(θ)=tan(θ)cos(θ)= 5/8cot(θ)+sqrt(3)=0,0<= θ<= 2pi2cos(θ)-sqrt(2)=0,0<= θ<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(40+x)=cos(5x+10) ?

    The general solution for sin(40+x)=cos(5x+10) is x=(6480n+900-180)/(108),x=-(900+6480n+180)/(72)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024