Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x+60)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x+60∘)=0

Solution

x=180∘n+15∘,x=180∘n+105∘
+1
Radians
x=12π​+πn,x=127π​+πn
Solution steps
cos(2x+60∘)=0
General solutions for cos(2x+60∘)=0
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x+60∘=90∘+360∘n,2x+60∘=270∘+360∘n
2x+60∘=90∘+360∘n,2x+60∘=270∘+360∘n
Solve 2x+60∘=90∘+360∘n:x=180∘n+15∘
2x+60∘=90∘+360∘n
Move 60∘to the right side
2x+60∘=90∘+360∘n
Subtract 60∘ from both sides2x+60∘−60∘=90∘+360∘n−60∘
Simplify
2x+60∘−60∘=90∘+360∘n−60∘
Simplify 2x+60∘−60∘:2x
2x+60∘−60∘
Add similar elements: 60∘−60∘=0
=2x
Simplify 90∘+360∘n−60∘:360∘n+30∘
90∘+360∘n−60∘
Group like terms=360∘n+90∘−60∘
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 90∘:multiply the denominator and numerator by 390∘=2⋅3180∘3​=90∘
For 60∘:multiply the denominator and numerator by 260∘=3⋅2180∘2​=60∘
=90∘−60∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6180∘3−180∘2​
Add similar elements: 540∘−360∘=180∘=360∘n+30∘
2x=360∘n+30∘
2x=360∘n+30∘
2x=360∘n+30∘
Divide both sides by 2
2x=360∘n+30∘
Divide both sides by 222x​=2360∘n​+230∘​
Simplify
22x​=2360∘n​+230∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2360∘n​+230∘​:180∘n+15∘
2360∘n​+230∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
230∘​=15∘
230∘​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2180∘​
Multiply the numbers: 6⋅2=12=15∘
=180∘n+15∘
x=180∘n+15∘
x=180∘n+15∘
x=180∘n+15∘
Solve 2x+60∘=270∘+360∘n:x=180∘n+105∘
2x+60∘=270∘+360∘n
Move 60∘to the right side
2x+60∘=270∘+360∘n
Subtract 60∘ from both sides2x+60∘−60∘=270∘+360∘n−60∘
Simplify
2x+60∘−60∘=270∘+360∘n−60∘
Simplify 2x+60∘−60∘:2x
2x+60∘−60∘
Add similar elements: 60∘−60∘=0
=2x
Simplify 270∘+360∘n−60∘:360∘n+210∘
270∘+360∘n−60∘
Group like terms=360∘n−60∘+270∘
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 60∘:multiply the denominator and numerator by 260∘=3⋅2180∘2​=60∘
For 270∘:multiply the denominator and numerator by 3270∘=2⋅3540∘3​=270∘
=−60∘+270∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−180∘2+1620∘​
Add similar elements: −360∘+1620∘=1260∘=360∘n+210∘
2x=360∘n+210∘
2x=360∘n+210∘
2x=360∘n+210∘
Divide both sides by 2
2x=360∘n+210∘
Divide both sides by 222x​=2360∘n​+2210∘​
Simplify
22x​=2360∘n​+2210∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2360∘n​+2210∘​:180∘n+105∘
2360∘n​+2210∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
2210∘​=105∘
2210∘​
Apply the fraction rule: acb​​=c⋅ab​=6⋅21260∘​
Multiply the numbers: 6⋅2=12=105∘
=180∘n+105∘
x=180∘n+105∘
x=180∘n+105∘
x=180∘n+105∘
x=180∘n+15∘,x=180∘n+105∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=0.6596-1=tan(x+pi/(18))cos(x+60)=-sin(x)sin(40+x)=cos(5x+10)cos(a)= 5/8

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(2x+60)=0 ?

    The general solution for cos(2x+60)=0 is x=180n+15,x=180n+105
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024