Solution
Solution
+1
Radians
étapes des solutions
Récrire en utilisant des identités trigonométriques:
Utiliser l'identité trigonométrique de base:
Récrire en utilisant des identités trigonométriques:
Récrire en utilisant des identités trigonométriques:
Ecrire comme
Utiliser l'identité de la différence de l'angle :
Utiliser l'identité triviale suivante:
Tableau de périodicité avec un cycle :
Utiliser l'identité triviale suivante:
Tableau de périodicité avec un cycle :
Utiliser l'identité triviale suivante:
Tableau de périodicité avec un cycle :
Utiliser l'identité triviale suivante:
Tableau de périodicité avec un cycle :
Simplifier
Multiplier des fractions:
Multiplier les nombres :
Simplifier
Appliquer la règle des radicaux:
Multiplier les nombres :
Multiplier des fractions:
Multiplier:
Multiplier les nombres :
Appliquer la règle
Simplifier
Appliquer la règle des fractions:
Simplifier
Multiplier par le conjugué
Appliquer la formule de différence de deux carrés :
Simplifier
Appliquer la règle des radicaux:
Appliquer la règle de l'exposant:
Multiplier des fractions:
Annuler le facteur commun :
Appliquer la règle des radicaux:
Appliquer la règle de l'exposant:
Multiplier des fractions:
Annuler le facteur commun :
Soustraire les nombres :
Diviser les nombres :
Appliquer les propriétés trigonométriques inverses
Solutions générales pour
Résoudre
Déplacer vers la droite
Soustraire des deux côtés
Simplifier
Diviser les deux côtés par
Diviser les deux côtés par
Simplifier
Simplifier
Diviser les nombres :
Simplifier
Grouper comme termes
Diviser les nombres :
Appliquer la règle des fractions:
Multiplier les nombres :
Annuler le facteur commun :
Résoudre
Déplacer vers la droite
Soustraire des deux côtés
Simplifier
Diviser les deux côtés par
Diviser les deux côtés par
Simplifier
Simplifier
Diviser les nombres :
Simplifier
Grouper comme termes
Diviser les nombres :
Diviser les nombres :
Appliquer la règle des fractions:
Multiplier les nombres :
Annuler le facteur commun :
Montrer les solutions sous la forme décimale