Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sec(x)=tan(x)+cot(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sec(x)=tan(x)+cot(x)

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
2sec(x)=tan(x)+cot(x)
Subtract tan(x)+cot(x) from both sides2sec(x)−tan(x)−cot(x)=0
Express with sin, cos
−cot(x)−tan(x)+2sec(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(x)cos(x)​−tan(x)+2sec(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(x)cos(x)​−cos(x)sin(x)​+2sec(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−sin(x)cos(x)​−cos(x)sin(x)​+2⋅cos(x)1​
Simplify −sin(x)cos(x)​−cos(x)sin(x)​+2⋅cos(x)1​:sin(x)cos(x)−cos2(x)+sin(x)(−sin(x)+2)​
−sin(x)cos(x)​−cos(x)sin(x)​+2⋅cos(x)1​
2⋅cos(x)1​=cos(x)2​
2⋅cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅2​
Multiply the numbers: 1⋅2=2=cos(x)2​
=−sin(x)cos(x)​−cos(x)sin(x)​+cos(x)2​
Combine the fractions −cos(x)sin(x)​+cos(x)2​:cos(x)−sin(x)+2​
Apply rule ca​±cb​=ca±b​=cos(x)−sin(x)+2​
=−sin(x)cos(x)​+cos(x)−sin(x)+2​
Least Common Multiplier of sin(x),cos(x):sin(x)cos(x)
sin(x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x) or cos(x)=sin(x)cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)cos(x)
For sin(x)cos(x)​:multiply the denominator and numerator by cos(x)sin(x)cos(x)​=sin(x)cos(x)cos(x)cos(x)​=sin(x)cos(x)cos2(x)​
For cos(x)−sin(x)+2​:multiply the denominator and numerator by sin(x)cos(x)−sin(x)+2​=cos(x)sin(x)(−sin(x)+2)sin(x)​
=−sin(x)cos(x)cos2(x)​+cos(x)sin(x)(−sin(x)+2)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)cos(x)−cos2(x)+(−sin(x)+2)sin(x)​
=sin(x)cos(x)−cos2(x)+sin(x)(−sin(x)+2)​
cos(x)sin(x)−cos2(x)+(2−sin(x))sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−cos2(x)+(2−sin(x))sin(x)=0
Rewrite using trig identities
−cos2(x)+(2−sin(x))sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+(2−sin(x))sin(x)
Simplify −(1−sin2(x))+(2−sin(x))sin(x):2sin(x)−1
−(1−sin2(x))+(2−sin(x))sin(x)
=−(1−sin2(x))+sin(x)(2−sin(x))
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+(2−sin(x))sin(x)
Expand sin(x)(2−sin(x)):2sin(x)−sin2(x)
sin(x)(2−sin(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=2,c=sin(x)=sin(x)⋅2−sin(x)sin(x)
=2sin(x)−sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=2sin(x)−sin2(x)
=−1+sin2(x)+2sin(x)−sin2(x)
Simplify −1+sin2(x)+2sin(x)−sin2(x):2sin(x)−1
−1+sin2(x)+2sin(x)−sin2(x)
Group like terms=sin2(x)+2sin(x)−sin2(x)−1
Add similar elements: sin2(x)−sin2(x)=0=2sin(x)−1
=2sin(x)−1
=2sin(x)−1
−1+2sin(x)=0
Move 1to the right side
−1+2sin(x)=0
Add 1 to both sides−1+2sin(x)+1=0+1
Simplify2sin(x)=1
2sin(x)=1
Divide both sides by 2
2sin(x)=1
Divide both sides by 222sin(x)​=21​
Simplifysin(x)=21​
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(3)sin(2x)=cos(2x)2sin(6x)+sqrt(3)=0sin(x)+cos(x)cot(x)=2cos(x)= 6/202sin(x-60)=cos(x-30)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sec(x)=tan(x)+cot(x) ?

    The general solution for 2sec(x)=tan(x)+cot(x) is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024