Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x-60)=cos(x-30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x−60∘)=cos(x−30∘)

Solution

x=1.38067…+180∘n
+1
Radians
x=1.38067…+πn
Solution steps
2sin(x−60∘)=cos(x−30∘)
Rewrite using trig identities
2sin(x−60∘)=cos(x−30∘)
Rewrite using trig identities
sin(x−60∘)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(x)cos(60∘)−cos(x)sin(60∘)
Simplify sin(x)cos(60∘)−cos(x)sin(60∘):21​sin(x)−23​​cos(x)
sin(x)cos(60∘)−cos(x)sin(60∘)
Simplify cos(60∘):21​
cos(60∘)
Use the following trivial identity:cos(60∘)=21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=21​sin(x)−sin(60∘)cos(x)
Simplify sin(60∘):23​​
sin(60∘)
Use the following trivial identity:sin(60∘)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=21​sin(x)−23​​cos(x)
=21​sin(x)−23​​cos(x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(30∘)+sin(x)sin(30∘)
Simplify cos(x)cos(30∘)+sin(x)sin(30∘):23​​cos(x)+21​sin(x)
cos(x)cos(30∘)+sin(x)sin(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)+sin(30∘)sin(x)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(x)+21​sin(x)
=23​​cos(x)+21​sin(x)
2(21​sin(x)−23​​cos(x))=23​​cos(x)+21​sin(x)
Simplify 2(21​sin(x)−23​​cos(x)):sin(x)−3​cos(x)
2(21​sin(x)−23​​cos(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=21​sin(x),c=23​​cos(x)=2⋅21​sin(x)−2⋅23​​cos(x)
Simplify 2⋅21​sin(x)−2⋅23​​cos(x):sin(x)−3​cos(x)
2⋅21​sin(x)−2⋅23​​cos(x)
2⋅21​sin(x)=sin(x)
2⋅21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​sin(x)
Cancel the common factor: 2=sin(x)⋅1
Multiply: sin(x)⋅1=sin(x)=sin(x)
2⋅23​​cos(x)=3​cos(x)
2⋅23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=223​​cos(x)
Cancel the common factor: 2=cos(x)3​
=sin(x)−3​cos(x)
=sin(x)−3​cos(x)
sin(x)−3​cos(x)=23​​cos(x)+21​sin(x)
sin(x)−3​cos(x)=23​​cos(x)+21​sin(x)
Subtract 23​​cos(x)+21​sin(x) from both sides21​sin(x)−23​​cos(x)−3​cos(x)=0
Simplify 21​sin(x)−23​​cos(x)−3​cos(x):2sin(x)−33​cos(x)​
21​sin(x)−23​​cos(x)−3​cos(x)
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
=2sin(x)​−23​cos(x)​−3​cos(x)
Combine the fractions 2sin(x)​−23​cos(x)​:2sin(x)−3​cos(x)​
Apply rule ca​±cb​=ca±b​=2sin(x)−3​cos(x)​
=2sin(x)−3​cos(x)​−3​cos(x)
Convert element to fraction: 3​cos(x)=23​cos(x)2​=2sin(x)−3​cos(x)​−23​cos(x)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2sin(x)−3​cos(x)−3​cos(x)⋅2​
Add similar elements: −3​cos(x)−23​cos(x)=−33​cos(x)=2sin(x)−33​cos(x)​
2sin(x)−33​cos(x)​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−33​cos(x)=0
Rewrite using trig identities
sin(x)−33​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−33​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−33​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−33​=0
tan(x)−33​=0
Move 33​to the right side
tan(x)−33​=0
Add 33​ to both sidestan(x)−33​+33​=0+33​
Simplifytan(x)=33​
tan(x)=33​
Apply trig inverse properties
tan(x)=33​
General solutions for tan(x)=33​tan(x)=a⇒x=arctan(a)+180∘nx=arctan(33​)+180∘n
x=arctan(33​)+180∘n
Show solutions in decimal formx=1.38067…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=sin(pi/2-x)cos(θ)=-24/25sin(x-30)=cos(2x)sin(x)=sec(x)sin(x-pi/3)=0.4

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(x-60)=cos(x-30) ?

    The general solution for 2sin(x-60)=cos(x-30) is x=1.38067…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024