Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0<82.5-67.5cos(pi/6 t)<20

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0<82.5−67.5cos(6π​t)<20

Solution

−π6arccos(2725​)​+12n<t<π6arccos(2725​)​+12n
+2
Interval Notation
(−π6arccos(2725​)​+12n,π6arccos(2725​)​+12n)
Decimal
−0.73972…+12n<t<0.73972…+12n
Solution steps
0<82.5−67.5cos(6π​t)<20
If a<u<bthen a<uandu<b0<82.5−67.5cos(6π​t)and82.5−67.5cos(6π​t)<20
0<82.5−67.5cos(6π​t):True for all t∈R
0<82.5−67.5cos(6π​t)
Switch sides82.5−67.5cos(6π​t)>0
Multiply both sides by 10
82.5−67.5cos(6π​t)>0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 1082.5⋅10−67.5cos(6π​t)⋅10>0⋅10
Refine825−675cos(6π​t)>0
825−675cos(6π​t)>0
Move 825to the right side
825−675cos(6π​t)>0
Subtract 825 from both sides825−675cos(6π​t)−825>0−825
Simplify−675cos(6π​t)>−825
−675cos(6π​t)>−825
Multiply both sides by −1
−675cos(6π​t)>−825
Multiply both sides by -1 (reverse the inequality)(−675cos(6π​t))(−1)<(−825)(−1)
Simplify675cos(6π​t)<825
675cos(6π​t)<825
Divide both sides by 675
675cos(6π​t)<825
Divide both sides by 675675675cos(6π​t)​<675825​
Simplifycos(6π​t)<911​
cos(6π​t)<911​
Range of cos(6π​t):−1≤cos(6π​t)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(6π​t)≤1−1≤cos(6π​t)≤1
cos(6π​t)<911​and−1≤cos(6π​t)≤1:−1≤cos(6π​t)≤1
Let y=cos(6π​t)
Combine the intervalsy<911​and−1≤y≤1
Merge Overlapping Intervals
y<911​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<911​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallt
Trueforallt∈R
82.5−67.5cos(6π​t)<20:−π6arccos(2725​)​+12n<t<π6arccos(2725​)​+12n
82.5−67.5cos(6π​t)<20
Multiply both sides by 10
82.5−67.5cos(6π​t)<20
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 1082.5⋅10−67.5cos(6π​t)⋅10<20⋅10
Refine825−675cos(6π​t)<200
825−675cos(6π​t)<200
Move 825to the right side
825−675cos(6π​t)<200
Subtract 825 from both sides825−675cos(6π​t)−825<200−825
Simplify−675cos(6π​t)<−625
−675cos(6π​t)<−625
Multiply both sides by −1
−675cos(6π​t)<−625
Multiply both sides by -1 (reverse the inequality)(−675cos(6π​t))(−1)>(−625)(−1)
Simplify675cos(6π​t)>625
675cos(6π​t)>625
Divide both sides by 675
675cos(6π​t)>625
Divide both sides by 675675675cos(6π​t)​>675625​
Simplifycos(6π​t)>2725​
cos(6π​t)>2725​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(2725​)+2πn<6π​t<arccos(2725​)+2πn
If a<u<bthen a<uandu<b−arccos(2725​)+2πn<6π​tand6π​t<arccos(2725​)+2πn
−arccos(2725​)+2πn<6π​t:t>−π6arccos(2725​)​+12n
−arccos(2725​)+2πn<6π​t
Switch sides6π​t>−arccos(2725​)+2πn
Multiply both sides by 6
6π​t>−arccos(2725​)+2πn
Multiply both sides by 66⋅6π​t>−6arccos(2725​)+6⋅2πn
Simplify
6⋅6π​t>−6arccos(2725​)+6⋅2πn
Simplify 6⋅6π​t:πt
6⋅6π​t
Multiply fractions: a⋅cb​=ca⋅b​=66π​t
Cancel the common factor: 6=tπ
Simplify −6arccos(2725​)+6⋅2πn:−6arccos(2725​)+12πn
−6arccos(2725​)+6⋅2πn
Multiply the numbers: 6⋅2=12=−6arccos(2725​)+12πn
πt>−6arccos(2725​)+12πn
πt>−6arccos(2725​)+12πn
πt>−6arccos(2725​)+12πn
Divide both sides by π
πt>−6arccos(2725​)+12πn
Divide both sides by πππt​>−π6arccos(2725​)​+π12πn​
Simplifyt>−π6arccos(2725​)​+12n
t>−π6arccos(2725​)​+12n
6π​t<arccos(2725​)+2πn:t<π6arccos(2725​)​+12n
6π​t<arccos(2725​)+2πn
Multiply both sides by 6
6π​t<arccos(2725​)+2πn
Multiply both sides by 66⋅6π​t<6arccos(2725​)+6⋅2πn
Simplify
6⋅6π​t<6arccos(2725​)+6⋅2πn
Simplify 6⋅6π​t:πt
6⋅6π​t
Multiply fractions: a⋅cb​=ca⋅b​=66π​t
Cancel the common factor: 6=tπ
Simplify 6arccos(2725​)+6⋅2πn:6arccos(2725​)+12πn
6arccos(2725​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6arccos(2725​)+12πn
πt<6arccos(2725​)+12πn
πt<6arccos(2725​)+12πn
πt<6arccos(2725​)+12πn
Divide both sides by π
πt<6arccos(2725​)+12πn
Divide both sides by πππt​<π6arccos(2725​)​+π12πn​
Simplifyt<π6arccos(2725​)​+12n
t<π6arccos(2725​)​+12n
Combine the intervalst>−π6arccos(2725​)​+12nandt<π6arccos(2725​)​+12n
Merge Overlapping Intervals−π6arccos(2725​)​+12n<t<π6arccos(2725​)​+12n
Combine the intervalsTrueforallt∈Rand−π6arccos(2725​)​+12n<t<π6arccos(2725​)​+12n
Merge Overlapping Intervals−π6arccos(2725​)​+12n<t<π6arccos(2725​)​+12n

Popular Examples

cos(x^2)0<x<sqrt(x)cos(x2)0<x<x​sin(x)=-4/5 \land cos(x)<0,sin(2x)sin(x)=−54​andcos(x)<0,sin(2x)cosh(θ)= 26/7 \land θ<0,sinh(θ)cosh(θ)=726​andθ<0,sinh(θ)-pi/2 <arcsin(x)< pi/2−2π​<arcsin(x)<2π​(11pi)/9 <= arctan(θ)<= (13pi)/9911π​≤arctan(θ)≤913π​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024