Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1<= tan(x/2-pi/3)<= sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1≤tan(2x​−3π​)≤3​

Solution

6π​+2πn≤x≤34π​+2πn
+2
Interval Notation
[6π​+2πn,34π​+2πn]
Decimal
0.52359…+2πn≤x≤4.18879…+2πn
Solution steps
−1≤tan(2x​−3π​)≤3​
If a≤u≤bthen a≤uandu≤b−1≤tan(2x​−3π​)andtan(2x​−3π​)≤3​
−1≤tan(2x​−3π​):6π​+2πn≤x<35π​+2πn
−1≤tan(2x​−3π​)
Switch sidestan(2x​−3π​)≥−1
If tan(x)≥athen arctan(a)+πn≤x<2π​+πnarctan(−1)+πn≤(2x​−3π​)<2π​+πn
If a≤u<bthen a≤uandu<barctan(−1)+πn≤2x​−3π​and2x​−3π​<2π​+πn
arctan(−1)+πn≤2x​−3π​:x≥2πn+6π​
arctan(−1)+πn≤2x​−3π​
Switch sides2x​−3π​≥arctan(−1)+πn
Simplify arctan(−1)+πn:−4π​+πn
arctan(−1)+πn
arctan(−1)=−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
=−4π​+πn
2x​−3π​≥−4π​+πn
Move 3π​to the right side
2x​−3π​≥−4π​+πn
Add 3π​ to both sides2x​−3π​+3π​≥−4π​+πn+3π​
Simplify
2x​−3π​+3π​≥−4π​+πn+3π​
Simplify 2x​−3π​+3π​:2x​
2x​−3π​+3π​
Add similar elements: −3π​+3π​≥0
=2x​
Simplify −4π​+πn+3π​:πn+12π​
−4π​+πn+3π​
Group like terms=πn−4π​+3π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=−12π3​+12π4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+π4​
Add similar elements: −3π+4π=π=πn+12π​
2x​≥πn+12π​
2x​≥πn+12π​
2x​≥πn+12π​
Multiply both sides by 2
2x​≥πn+12π​
Multiply both sides by 222x​≥2πn+2⋅12π​
Simplify
22x​≥2πn+2⋅12π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2πn+2⋅12π​:2πn+6π​
2πn+2⋅12π​
2⋅12π​=6π​
2⋅12π​
Multiply fractions: a⋅cb​=ca⋅b​=12π2​
Cancel the common factor: 2=6π​
=2πn+6π​
x≥2πn+6π​
x≥2πn+6π​
x≥2πn+6π​
2x​−3π​<2π​+πn:x<2πn+35π​
2x​−3π​<2π​+πn
Move 3π​to the right side
2x​−3π​<2π​+πn
Add 3π​ to both sides2x​−3π​+3π​<2π​+πn+3π​
Simplify
2x​−3π​+3π​<2π​+πn+3π​
Simplify 2x​−3π​+3π​:2x​
2x​−3π​+3π​
Add similar elements: −3π​+3π​<0
=2x​
Simplify 2π​+πn+3π​:πn+65π​
2π​+πn+3π​
Group like terms=πn+2π​+3π​
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
=6π3​+6π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π3+π2​
Add similar elements: 3π+2π=5π=πn+65π​
2x​<πn+65π​
2x​<πn+65π​
2x​<πn+65π​
Multiply both sides by 2
2x​<πn+65π​
Multiply both sides by 222x​<2πn+2⋅65π​
Simplify
22x​<2πn+2⋅65π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2πn+2⋅65π​:2πn+35π​
2πn+2⋅65π​
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
=2πn+35π​
x<2πn+35π​
x<2πn+35π​
x<2πn+35π​
Combine the intervalsx≥2πn+6π​andx<2πn+35π​
Merge Overlapping Intervals6π​+2πn≤x<35π​+2πn
tan(2x​−3π​)≤3​:−3π​+2πn<x≤34π​+2πn
tan(2x​−3π​)≤3​
If tan(x)≤athen −2π​+πn<x≤arctan(a)+πn−2π​+πn<(2x​−3π​)≤arctan(3​)+πn
If a<u≤bthen a<uandu≤b−2π​+πn<2x​−3π​and2x​−3π​≤arctan(3​)+πn
−2π​+πn<2x​−3π​:x>2πn−3π​
−2π​+πn<2x​−3π​
Switch sides2x​−3π​>−2π​+πn
Move 3π​to the right side
2x​−3π​>−2π​+πn
Add 3π​ to both sides2x​−3π​+3π​>−2π​+πn+3π​
Simplify
2x​−3π​+3π​>−2π​+πn+3π​
Simplify 2x​−3π​+3π​:2x​
2x​−3π​+3π​
Add similar elements: −3π​+3π​>0
=2x​
Simplify −2π​+πn+3π​:πn−6π​
−2π​+πn+3π​
Group like terms=πn−2π​+3π​
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
=−6π3​+6π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π3+π2​
Add similar elements: −3π+2π=−π=6−π​
Apply the fraction rule: b−a​=−ba​=πn−6π​
2x​>πn−6π​
2x​>πn−6π​
2x​>πn−6π​
Multiply both sides by 2
2x​>πn−6π​
Multiply both sides by 222x​>2πn−2⋅6π​
Simplify
22x​>2πn−2⋅6π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2πn−2⋅6π​:2πn−3π​
2πn−2⋅6π​
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
=2πn−3π​
x>2πn−3π​
x>2πn−3π​
x>2πn−3π​
2x​−3π​≤arctan(3​)+πn:x≤34π​+2πn
2x​−3π​≤arctan(3​)+πn
Simplify arctan(3​)+πn:3π​+πn
arctan(3​)+πn
Use the following trivial identity:arctan(3​)=3π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=3π​+πn
2x​−3π​≤3π​+πn
Move 3π​to the right side
2x​−3π​≤3π​+πn
Add 3π​ to both sides2x​−3π​+3π​≤3π​+πn+3π​
Simplify
2x​−3π​+3π​≤3π​+πn+3π​
Simplify 2x​−3π​+3π​:2x​
2x​−3π​+3π​
Add similar elements: −3π​+3π​≤0
=2x​
Simplify 3π​+πn+3π​:32π​+πn
3π​+πn+3π​
Group like terms=3π​+3π​+πn
Combine the fractions 3π​+3π​:32π​
Apply rule ca​±cb​=ca±b​=3π+π​
Add similar elements: π+π=2π=32π​
=32π​+πn
2x​≤32π​+πn
2x​≤32π​+πn
2x​≤32π​+πn
Multiply both sides by 2
2x​≤32π​+πn
Multiply both sides by 222x​≤2⋅32π​+2πn
Simplify
22x​≤2⋅32π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅32π​+2πn:34π​+2πn
2⋅32π​+2πn
2⋅32π​=34π​
2⋅32π​
Multiply fractions: a⋅cb​=ca⋅b​=32π2​
Multiply the numbers: 2⋅2=4=34π​
=34π​+2πn
x≤34π​+2πn
x≤34π​+2πn
x≤34π​+2πn
Combine the intervalsx>2πn−3π​andx≤34π​+2πn
Merge Overlapping Intervals−3π​+2πn<x≤34π​+2πn
Combine the intervals6π​+2πn≤x<35π​+2πnand−3π​+2πn<x≤34π​+2πn
Merge Overlapping Intervals6π​+2πn≤x≤34π​+2πn

Popular Examples

-1>=-cos(2x)>= 1−1≥−cos(2x)≥10<82.5-67.5cos(pi/6 t)<200<82.5−67.5cos(6π​t)<20cos(x^2)0<x<sqrt(x)cos(x2)0<x<x​sin(x)=-4/5 \land cos(x)<0,sin(2x)sin(x)=−54​andcos(x)<0,sin(2x)cosh(θ)= 26/7 \land θ<0,sinh(θ)cosh(θ)=726​andθ<0,sinh(θ)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024