Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)+3((sin(2x))/(2sin(x)))<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)+3(2sin(x)sin(2x)​)<0

Solution

−0.98279…+π+2πn<x<π+2πnorπ+2πn<x<−0.98279…+2π+2πn
+2
Interval Notation
(−0.98279…+π+2πn,π+2πn)∪(π+2πn,−0.98279…+2π+2πn)
Decimal
2.15879…+2πn<x<3.14159…+2πnor3.14159…+2πn<x<5.30039…+2πn
Solution steps
2sin(x)+3⋅2sin(x)sin(2x)​<0
Simplify 2sin(x)+3⋅2sin(x)sin(2x)​:2sin(x)4sin2(x)+3sin(2x)​
2sin(x)+3⋅2sin(x)sin(2x)​
Multiply 3⋅2sin(x)sin(2x)​:2sin(x)3sin(2x)​
3⋅2sin(x)sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=2sin(x)sin(2x)⋅3​
=2sin(x)+2sin(x)3sin(2x)​
Convert element to fraction: 2sin(x)=2sin(x)2sin(x)2sin(x)​=2sin(x)2sin(x)⋅2sin(x)​+2sin(x)sin(2x)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2sin(x)2sin(x)⋅2sin(x)+sin(2x)⋅3​
2sin(x)⋅2sin(x)+sin(2x)⋅3=4sin2(x)+3sin(2x)
2sin(x)⋅2sin(x)+sin(2x)⋅3
2sin(x)⋅2sin(x)=4sin2(x)
2sin(x)⋅2sin(x)
Multiply the numbers: 2⋅2=4=4sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=4sin1+1(x)
Add the numbers: 1+1=2=4sin2(x)
=4sin2(x)+3sin(2x)
=2sin(x)4sin2(x)+3sin(2x)​
2sin(x)4sin2(x)+3sin(2x)​<0
Periodicity of 2sin(x)+32sin(x)sin(2x)​:2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2sin(x),32sin(x)sin(2x)​
Periodicity of 2sin(x):2π
Periodicity of a⋅sin(bx+c)+d=∣b∣periodicityofsin(x)​Periodicity of sin(x)is 2π=∣1∣2π​
Simplify=2π
Periodicity of 32sin(x)sin(2x)​:2π
32sin(x)sin(2x)​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:2π
Combine periods: 2π,2π
=2π
Find the zeroes and undifined points of 2sin(x)4sin2(x)+3sin(2x)​for 0≤x<2π
To find the zeroes, set the inequality to zero2sin(x)4sin2(x)+3sin(2x)​=0
2sin(x)4sin2(x)+3sin(2x)​=0,0≤x<2π:x=−0.98279…+π,x=−0.98279…+2π
2sin(x)4sin2(x)+3sin(2x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=04sin2(x)+3sin(2x)=0
Rewrite using trig identities
3sin(2x)+4sin2(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=3⋅2sin(x)cos(x)+4sin2(x)
Simplify=6sin(x)cos(x)+4sin2(x)
4sin2(x)+6cos(x)sin(x)=0
Factor 4sin2(x)+6cos(x)sin(x):2sin(x)(2sin(x)+3cos(x))
4sin2(x)+6cos(x)sin(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=4sin(x)sin(x)+6sin(x)cos(x)
Rewrite 6 as 3⋅2Rewrite 4 as 2⋅2=2⋅2sin(x)sin(x)+3⋅2sin(x)cos(x)
Factor out common term 2sin(x)=2sin(x)(2sin(x)+3cos(x))
2sin(x)(2sin(x)+3cos(x))=0
Solving each part separatelysin(x)=0or2sin(x)+3cos(x)=0
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
2sin(x)+3cos(x)=0,0≤x<2π:x=−arctan(23​)+π,x=−arctan(23​)+2π
2sin(x)+3cos(x)=0,0≤x<2π
Rewrite using trig identities
2sin(x)+3cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)2sin(x)+3cos(x)​=cos(x)0​
Simplifycos(x)2sin(x)​+3=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2tan(x)+3=0
2tan(x)+3=0
Move 3to the right side
2tan(x)+3=0
Subtract 3 from both sides2tan(x)+3−3=0−3
Simplify2tan(x)=−3
2tan(x)=−3
Divide both sides by 2
2tan(x)=−3
Divide both sides by 222tan(x)​=2−3​
Simplifytan(x)=−23​
tan(x)=−23​
Apply trig inverse properties
tan(x)=−23​
General solutions for tan(x)=−23​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−23​)+πn
x=arctan(−23​)+πn
Solutions for the range 0≤x<2πx=−arctan(23​)+π,x=−arctan(23​)+2π
Combine all the solutionsx=0,x=π,x=−arctan(23​)+π,x=−arctan(23​)+2π
Since the equation is undefined for:0,πx=−arctan(23​)+π,x=−arctan(23​)+2π
Show solutions in decimal formx=−0.98279…+π,x=−0.98279…+2π
Find the undefined points:x=0,x=π
Find the zeros of the denominator2sin(x)=0
Divide both sides by 2
2sin(x)=0
Divide both sides by 222sin(x)​=20​
Simplifysin(x)=0
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
0,−0.98279…+π,π,−0.98279…+2π
Identify the intervals0<x<−0.98279…+π,−0.98279…+π<x<π,π<x<−0.98279…+2π,−0.98279…+2π<x<2π
Summarize in a table:4sin2(x)+3sin(2x)sin(x)2sin(x)4sin2(x)+3sin(2x)​​x=000Undefined​0<x<−0.98279…+π+++​x=−0.98279…+π0+0​−0.98279…+π<x<π−+−​x=π00Undefined​π<x<−0.98279…+2π+−−​x=−0.98279…+2π0−0​−0.98279…+2π<x<2π−−+​x=2π00Undefined​​
Identify the intervals that satisfy the required condition: <0−0.98279…+π<x<πorπ<x<−0.98279…+2π
Apply the periodicity of 2sin(x)+32sin(x)sin(2x)​−0.98279…+π+2πn<x<π+2πnorπ+2πn<x<−0.98279…+2π+2πn

Popular Examples

cos^2(x)>sin(x)cos(x)cos2(x)>sin(x)cos(x)cos(θ)>0,sin(θ)>0cos(θ)>0,sin(θ)>0tan^2(x)>= sqrt(3)tan(x)tan2(x)≥3​tan(x)solvefor θ,cos(θ)>= 0solveforθ,cos(θ)≥0arcsin(3pix+2)>= 0arcsin(3πx+2)≥0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024