domain of f(x)=-10
|
domain\:f(x)=-10
|
domain of sqrt(x+5)-(sqrt(3-x))/x
|
domain\:\sqrt{x+5}-\frac{\sqrt{3-x}}{x}
|
domain of f(x)=-sqrt(((x^2))/(x-1))
|
domain\:f(x)=-\sqrt{\frac{(x^{2})}{x-1}}
|
domain of (2x^3-x^2-18x+9)/(x^2+4x+3)
|
domain\:\frac{2x^{3}-x^{2}-18x+9}{x^{2}+4x+3}
|
domain of f(x)=(| 1/x |)/(1/x)
|
domain\:f(x)=\frac{\left|\frac{1}{x}\right|}{\frac{1}{x}}
|
domain of y=(sqrt(5-x))/(-4x+8)
|
domain\:y=\frac{\sqrt{5-x}}{-4x+8}
|
domain of (4x^2+1)/((-2x+1)x)
|
domain\:\frac{4x^{2}+1}{(-2x+1)x}
|
domain of f(x)= 5/((4x-1))
|
domain\:f(x)=\frac{5}{(4x-1)}
|
domain of (x^2)/(log_{e)(x)}
|
domain\:\frac{x^{2}}{\log_{e}(x)}
|
domain of f(x)=(2x)/(sqrt(ln(x)))
|
domain\:f(x)=\frac{2x}{\sqrt{\ln(x)}}
|
domain of f(x)=((\sqrt[4]{x}))/(25-x)
|
domain\:f(x)=\frac{(\sqrt[4]{x})}{25-x}
|
domain of f(x)=(2x-1)/(x^2+2x)
|
domain\:f(x)=\frac{2x-1}{x^{2}+2x}
|
domain of 3x^4sqrt(x)
|
domain\:3x^{4}\sqrt{x}
|
domain of x^2-12x+58
|
domain\:x^{2}-12x+58
|
domain of 1/(xe^x)
|
domain\:\frac{1}{xe^{x}}
|
domain of ((x+4))/((4-sqrt(x^2-9)))
|
domain\:\frac{(x+4)}{(4-\sqrt{x^{2}-9})}
|
domain of f(x)=sqrt((1/(1-x))-2)
|
domain\:f(x)=\sqrt{(\frac{1}{1-x})-2}
|
domain of f(x)=log_{10}(1/3)x
|
domain\:f(x)=\log_{10}(\frac{1}{3})x
|
domain of 138.79*1/(x^{0.991)}
|
domain\:138.79\cdot\:\frac{1}{x^{0.991}}
|
domain of (x-3)/(x-6)
|
domain\:\frac{x-3}{x-6}
|
extreme f(x)=4x^3+33x^2-36x-530
|
extreme\:f(x)=4x^{3}+33x^{2}-36x-530
|
extreme y=-2x^3+540x^2
|
extreme\:y=-2x^{3}+540x^{2}
|
extreme f(x,y)=x^3+4y^2-3x+1
|
extreme\:f(x,y)=x^{3}+4y^{2}-3x+1
|
extreme R(x,y)=-x^2-y^2+x+2y-1
|
extreme\:R(x,y)=-x^{2}-y^{2}+x+2y-1
|
extreme f(x)=9x^3-7x^2+3x+10
|
extreme\:f(x)=9x^{3}-7x^{2}+3x+10
|
extreme f(x,y)=(2x-x^2)(2y-y^2)
|
extreme\:f(x,y)=(2x-x^{2})(2y-y^{2})
|
extreme x^2-6x+10
|
extreme\:x^{2}-6x+10
|
extreme f(x,y)=7-xy+x^5y^3
|
extreme\:f(x,y)=7-xy+x^{5}y^{3}
|
extreme f(x)=3x^2-x^3,1<= x<= 5
|
extreme\:f(x)=3x^{2}-x^{3},1\le\:x\le\:5
|
extreme f(x,y)=x^2+y^3-4x-3y
|
extreme\:f(x,y)=x^{2}+y^{3}-4x-3y
|
extreme f(x)=cos(3x)-2
|
extreme\:f(x)=\cos(3x)-2
|
extreme f(x)=-sin(x)-4
|
extreme\:f(x)=-\sin(x)-4
|
extreme f(x)=2x^3-x^2-4x+8(-1)
|
extreme\:f(x)=2x^{3}-x^{2}-4x+8(-1)
|
extreme f(x,y)=2x^5+x^3y^2+6xy^4
|
extreme\:f(x,y)=2x^{5}+x^{3}y^{2}+6xy^{4}
|
extreme f(x,y)=x^2-2x^3+2x^2+3xy
|
extreme\:f(x,y)=x^{2}-2x^{3}+2x^{2}+3xy
|
extreme f(x,y)=x^2y^3-(x-2y)^2+6x^4y=3xy
|
extreme\:f(x,y)=x^{2}y^{3}-(x-2y)^{2}+6x^{4}y=3xy
|
extreme f(x)=2x^4-20x^2+18
|
extreme\:f(x)=2x^{4}-20x^{2}+18
|
extreme-x^2+4x+6
|
extreme\:-x^{2}+4x+6
|
extreme f(x,y)=-2x^3+6xy+3y^3
|
extreme\:f(x,y)=-2x^{3}+6xy+3y^{3}
|
extreme f(x)=x^2+2x+3
|
extreme\:f(x)=x^{2}+2x+3
|
extreme f(x,y)=sqrt(400-9x^2-49y^2)
|
extreme\:f(x,y)=\sqrt{400-9x^{2}-49y^{2}}
|
extreme f(x,y)=3x^2-12x+2y^2-8y+7
|
extreme\:f(x,y)=3x^{2}-12x+2y^{2}-8y+7
|
extreme f(x,y)=x*e^{x+y^2}
|
extreme\:f(x,y)=x\cdot\:e^{x+y^{2}}
|
extreme f(x)=2sin^2(x)
|
extreme\:f(x)=2\sin^{2}(x)
|
extreme f(x)=5+6x-8x^3
|
extreme\:f(x)=5+6x-8x^{3}
|
extreme f(x)=2x^3+24x+5
|
extreme\:f(x)=2x^{3}+24x+5
|
extreme f(x,y)=3-x^4+2x^2-y^2
|
extreme\:f(x,y)=3-x^{4}+2x^{2}-y^{2}
|
extreme f(x,y)=xsqrt(y)+ysqrt(x)
|
extreme\:f(x,y)=x\sqrt{y}+y\sqrt{x}
|
extreme f(x)=x^2-8ln(x)
|
extreme\:f(x)=x^{2}-8\ln(x)
|
extreme f(x)=3x^2e^x
|
extreme\:f(x)=3x^{2}e^{x}
|
extreme f(x)=4y^2-5x=2y-3y^2
|
extreme\:f(x)=4y^{2}-5x=2y-3y^{2}
|
extreme f(x,y)=x^3-y^3-6xy-4
|
extreme\:f(x,y)=x^{3}-y^{3}-6xy-4
|
extreme f(x)=(2(x+2)^2)/(x^2)
|
extreme\:f(x)=\frac{2(x+2)^{2}}{x^{2}}
|
extreme f(x,y)=2x^3-2y^3+12xy+3
|
extreme\:f(x,y)=2x^{3}-2y^{3}+12xy+3
|
extreme 2x^3-3x^2-12x+8
|
extreme\:2x^{3}-3x^{2}-12x+8
|
extreme f(x)=x^3-3x-1
|
extreme\:f(x)=x^{3}-3x-1
|
extreme f(x,y)=(500)/(4+x^2+y^2)
|
extreme\:f(x,y)=\frac{500}{4+x^{2}+y^{2}}
|
extreme f(x,y)=2y^2+2xy+x^2-16x-20y
|
extreme\:f(x,y)=2y^{2}+2xy+x^{2}-16x-20y
|
FUNCTION_MANY#extreme f(x,y)= 1/x-(64)/y+xy
|
FUNCTION_MANY#extreme\:f(x,y)=\frac{1}{x}-\frac{64}{y}+xy
|
extreme f(x)=xsqrt(5-x)
|
extreme\:f(x)=x\sqrt{5-x}
|
extreme f(x)=cos(3x)-2,(0,2pi)
|
extreme\:f(x)=\cos(3x)-2,(0,2π)
|
extreme f(x)=-3sin(2x)-4
|
extreme\:f(x)=-3\sin(2x)-4
|
extreme f(x,y)=x^3-4xy+y^3
|
extreme\:f(x,y)=x^{3}-4xy+y^{3}
|
extreme f(x)=2sin^2(x),0<= x<= pi
|
extreme\:f(x)=2\sin^{2}(x),0\le\:x\le\:π
|
extreme f(x)=4cos(3x)+5,(0,2pi)
|
extreme\:f(x)=4\cos(3x)+5,(0,2π)
|
extreme f(x,y)=14xy-x^3-7y^2
|
extreme\:f(x,y)=14xy-x^{3}-7y^{2}
|
extreme f(x,y)=x^2+xy+y^2-25y+208
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-25y+208
|
extreme f(x,y)=2xe^{-y}
|
extreme\:f(x,y)=2xe^{-y}
|
extreme y=(x(z+2))/7
|
extreme\:y=\frac{x(z+2)}{7}
|
extreme 1/(x^2)+1/y+2xy
|
extreme\:\frac{1}{x^{2}}+\frac{1}{y}+2xy
|
FUNCTION_MANY#extreme f(x,y)=x^4-2x^2+y^3-3y
|
FUNCTION_MANY#extreme\:f(x,y)=x^{4}-2x^{2}+y^{3}-3y
|
extreme f(x)=4xy^2-2x^2y-x
|
extreme\:f(x)=4xy^{2}-2x^{2}y-x
|
extreme f(x,y)=x^4y^4+2x^2y^2-2x^2-2y^2
|
extreme\:f(x,y)=x^{4}y^{4}+2x^{2}y^{2}-2x^{2}-2y^{2}
|
extreme ((x+4)(x-1))/(3x+2)
|
extreme\:\frac{(x+4)(x-1)}{3x+2}
|
extreme f(x)=4cos(3x)+5
|
extreme\:f(x)=4\cos(3x)+5
|
extreme f(x)=5sin(3x)-5
|
extreme\:f(x)=5\sin(3x)-5
|
extreme (x^2-x-6)/(x^2-7x+10)
|
extreme\:\frac{x^{2}-x-6}{x^{2}-7x+10}
|
extreme f(x,y)=y^3+6x^2y-6x^2-6y^2+3
|
extreme\:f(x,y)=y^{3}+6x^{2}y-6x^{2}-6y^{2}+3
|
extreme 1-x^3
|
extreme\:1-x^{3}
|
extreme f(t)=5u(t-2)
|
extreme\:f(t)=5u(t-2)
|
extreme G(x,y)=50000x+40000y-10x^2-20y^2-10xy
|
extreme\:G(x,y)=50000x+40000y-10x^{2}-20y^{2}-10xy
|
extreme f(x,y)=5x^4-x^2+3y^2
|
extreme\:f(x,y)=5x^{4}-x^{2}+3y^{2}
|
extreme sqrt(x+2)+1
|
extreme\:\sqrt{x+2}+1
|
d/(do)(sqrt(2x+1)on[0.2])
|
\frac{d}{do}(\sqrt{2x+1}on[0.2])
|
extreme f(x)=((x^2-5)^3)/(125)
|
extreme\:f(x)=\frac{(x^{2}-5)^{3}}{125}
|
extreme f(x)=(x+4)^{2/3}
|
extreme\:f(x)=(x+4)^{\frac{2}{3}}
|
extreme f(x)=-2x+5ln(2x)
|
extreme\:f(x)=-2x+5\ln(2x)
|
extreme f(x)=2cos^2(x),0<= x<= pi
|
extreme\:f(x)=2\cos^{2}(x),0\le\:x\le\:π
|
extreme (12)/(x^2+1)
|
extreme\:\frac{12}{x^{2}+1}
|
extreme f(x)=cos(x)-2x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-2x,0\le\:x\le\:4π
|
extreme f(x)=(7(x-1)^2)/(x+9)
|
extreme\:f(x)=\frac{7(x-1)^{2}}{x+9}
|
derivative of (x+y2+2y^2)
|
\frac{d}{dx}((x+y)2+2y^{2})
|
extreme f(x)=(2(x+7)^2)/(x+10)
|
extreme\:f(x)=\frac{2(x+7)^{2}}{x+10}
|
extreme (2x^2-5x+5)/(x-2)
|
extreme\:\frac{2x^{2}-5x+5}{x-2}
|
extreme f(x)=2x^2-12x+20
|
extreme\:f(x)=2x^{2}-12x+20
|
extreme f(x)=4sin^2(x),0<= x<= pi
|
extreme\:f(x)=4\sin^{2}(x),0\le\:x\le\:π
|
extreme f(x,y)=x^3+y^3-3x^2-9y^2-9x
|
extreme\:f(x,y)=x^{3}+y^{3}-3x^{2}-9y^{2}-9x
|
extreme f(x,y)=4x^2+1/4 y^3-2xy
|
extreme\:f(x,y)=4x^{2}+\frac{1}{4}y^{3}-2xy
|
extreme f(x)=8x+7x^{-1}
|
extreme\:f(x)=8x+7x^{-1}
|
extreme f(x)=x^3+6x^2+12x+7
|
extreme\:f(x)=x^{3}+6x^{2}+12x+7
|