Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
line m=-1/3 ,(0,0)
line\:m=-\frac{1}{3},(0,0)
domain of y= 6/(sqrt(x))
domain\:y=\frac{6}{\sqrt{x}}
slope ofintercept 8-3
slopeintercept\:8-3
inverse of f(x)=0.825y
inverse\:f(x)=0.825y
range of (x-3)/(x^2-16)
range\:\frac{x-3}{x^{2}-16}
asymptotes of f(x)= x/(x^2+1)
asymptotes\:f(x)=\frac{x}{x^{2}+1}
domain of f(x)=sqrt(32-4x)
domain\:f(x)=\sqrt{32-4x}
midpoint (-2,4),(2.5,3.5)
midpoint\:(-2,4),(2.5,3.5)
intercepts of f(x)=-3sin(1/2 x+pi/5)
intercepts\:f(x)=-3\sin(\frac{1}{2}x+\frac{π}{5})
inverse of 3x+1
inverse\:3x+1
range of 2(x-1)^2+1
range\:2(x-1)^{2}+1
inverse of f(x)=log_{10}(x-3)
inverse\:f(x)=\log_{10}(x-3)
W(x)=9x^3+x^2-729x+81
W(x)=9x^{3}+x^{2}-729x+81
domain of (7/x)-(9/(x+9))
domain\:(\frac{7}{x})-(\frac{9}{x+9})
inverse of f(x)=(5x)/(7x-1)
inverse\:f(x)=\frac{5x}{7x-1}
domain of f(x)=(5x)/(ln(x^2-4))
domain\:f(x)=\frac{5x}{\ln(x^{2}-4)}
inverse of f(x)=1+sqrt(5+6x)
inverse\:f(x)=1+\sqrt{5+6x}
domain of e^{sqrt(x+1)}
domain\:e^{\sqrt{x+1}}
domain of f(y)=x+4y=-10
domain\:f(y)=x+4y=-10
perpendicular y=x+2/5 ,(3,9)
perpendicular\:y=x+\frac{2}{5},(3,9)
inverse of f(x)= 1/2 sqrt(x)-4
inverse\:f(x)=\frac{1}{2}\sqrt{x}-4
range of f(x)= 6/(x^2+1)
range\:f(x)=\frac{6}{x^{2}+1}
slope ofintercept-3x+y=1
slopeintercept\:-3x+y=1
distance (-6,2),(4,1)
distance\:(-6,2),(4,1)
domain of f(x)=3sin(x)
domain\:f(x)=3\sin(x)
inverse of f(x)=((x-1)/3)
inverse\:f(x)=(\frac{x-1}{3})
parity f(x)=2x^2-4x
parity\:f(x)=2x^{2}-4x
intercepts of (x^2+1)/(x^2-1)
intercepts\:\frac{x^{2}+1}{x^{2}-1}
inverse of f(x)=(2x-1)/(2x+3)
inverse\:f(x)=\frac{2x-1}{2x+3}
domain of f(x)=(x+2)/3
domain\:f(x)=\frac{x+2}{3}
line (25,0),(30,1)
line\:(25,0),(30,1)
domain of f(x)=sqrt(x^2-5x+6)
domain\:f(x)=\sqrt{x^{2}-5x+6}
domain of (-8x+75)/(9x-61)
domain\:\frac{-8x+75}{9x-61}
intercepts of f(x)=(3x^2+6x+3)/(x^2+x)
intercepts\:f(x)=\frac{3x^{2}+6x+3}{x^{2}+x}
f(x)=sqrt(1+x^2)
f(x)=\sqrt{1+x^{2}}
extreme sqrt(x+3)
extreme\:\sqrt{x+3}
inverse of f(x)=e^{x+3}
inverse\:f(x)=e^{x+3}
range of e^{x-5}
range\:e^{x-5}
line (30-i)-(18+6i)-30
line\:(30-i)-(18+6i)-30
line (-7,3),(2,10)
line\:(-7,3),(2,10)
line m=-2,(-2,5)
line\:m=-2,(-2,5)
inverse of f(x)=x^2+x-1
inverse\:f(x)=x^{2}+x-1
intercepts of f(x)=x^2-2x-2
intercepts\:f(x)=x^{2}-2x-2
periodicity of y=-tan(x-pi/2)
periodicity\:y=-\tan(x-\frac{π}{2})
range of (x^2-5x+6)/(x^2-4x+3)
range\:\frac{x^{2}-5x+6}{x^{2}-4x+3}
symmetry 2x-x^2+8
symmetry\:2x-x^{2}+8
range of f(x)=sqrt(x^2+6x-7)
range\:f(x)=\sqrt{x^{2}+6x-7}
f(x)=x+1/x
f(x)=x+\frac{1}{x}
domain of f(x)=sqrt(4-x)
domain\:f(x)=\sqrt{4-x}
intercepts of f(x)=(4x+20)/(-x^2-5x)
intercepts\:f(x)=\frac{4x+20}{-x^{2}-5x}
f(x)=3x^2
f(x)=3x^{2}
asymptotes of y= 6/(3+2x)
asymptotes\:y=\frac{6}{3+2x}
domain of g(x)=sqrt(x^2-6x-27)
domain\:g(x)=\sqrt{x^{2}-6x-27}
inverse of f(x)=15.5-5t
inverse\:f(x)=15.5-5t
domain of f(x)=sqrt(x^3-9x^2-x+9)
domain\:f(x)=\sqrt{x^{3}-9x^{2}-x+9}
inflection-4x^4+5x^3-x^2
inflection\:-4x^{4}+5x^{3}-x^{2}
monotone 5x^3-5x^2-4
monotone\:5x^{3}-5x^{2}-4
parity f(x)=sqrt(8x)
parity\:f(x)=\sqrt{8x}
domain of f(x)=sqrt(2-5x)
domain\:f(x)=\sqrt{2-5x}
range of cos(4x)
range\:\cos(4x)
range of (3x)/(2x-1)
range\:\frac{3x}{2x-1}
range of f(x)=-2x^2+2x
range\:f(x)=-2x^{2}+2x
inflection f(x)=x^{1/3}
inflection\:f(x)=x^{\frac{1}{3}}
parity f(x)= 1/(x-1)
parity\:f(x)=\frac{1}{x-1}
critical f(x)=(ln(x))/x
critical\:f(x)=\frac{\ln(x)}{x}
domain of f(x)=1+sqrt(x)
domain\:f(x)=1+\sqrt{x}
domain of f(x)=(x+6)/(24-sqrt(x^2-49))
domain\:f(x)=\frac{x+6}{24-\sqrt{x^{2}-49}}
periodicity of y=sin(x)+2
periodicity\:y=\sin(x)+2
domain of-3x^2+x+5
domain\:-3x^{2}+x+5
domain of \sqrt[4]{x}^5
domain\:\sqrt[4]{x}^{5}
amplitude of 2cos(2x-1)+4
amplitude\:2\cos(2x-1)+4
amplitude of-6cos(8x-pi/2)
amplitude\:-6\cos(8x-\frac{π}{2})
domain of f(x)=x^2-9x
domain\:f(x)=x^{2}-9x
intercepts of f(x)=12x^2+8x-15
intercepts\:f(x)=12x^{2}+8x-15
intercepts of f(x)=0
intercepts\:f(x)=0
domain of f(x)=(x^2)/(5-x)
domain\:f(x)=\frac{x^{2}}{5-x}
intercepts of f(x)=7x+2
intercepts\:f(x)=7x+2
parity f(x)=x^3-4x
parity\:f(x)=x^{3}-4x
inverse of f(x)=(5x-8)^2
inverse\:f(x)=(5x-8)^{2}
critical 0.5x-(2560)/(x^2)
critical\:0.5x-\frac{2560}{x^{2}}
line (5,16.5),(14,17.7)
line\:(5,16.5),(14,17.7)
inverse of f(x)=(2x+1)/x
inverse\:f(x)=\frac{2x+1}{x}
domain of f(x)=sqrt(x-1)+5
domain\:f(x)=\sqrt{x-1}+5
intercepts of y=11x+6
intercepts\:y=11x+6
inverse of (3x-2)/(7x+3)
inverse\:\frac{3x-2}{7x+3}
domain of f(x)=(2x+1)/(x^2-49)
domain\:f(x)=\frac{2x+1}{x^{2}-49}
domain of f(x)=2
domain\:f(x)=2
inverse of e^{4sqrt(x)}
inverse\:e^{4\sqrt{x}}
critical f(x)=ln(x-3)
critical\:f(x)=\ln(x-3)
range of-x^2+4x-4
range\:-x^{2}+4x-4
intercepts of f(x)=3x-y=9
intercepts\:f(x)=3x-y=9
intercepts of f(x)=-x+3y=-2
intercepts\:f(x)=-x+3y=-2
domain of log_{10}(x^2-1)
domain\:\log_{10}(x^{2}-1)
domain of f(x)=(x+9)/(x^2-9)
domain\:f(x)=\frac{x+9}{x^{2}-9}
domain of f(x)=(7x+3)/x
domain\:f(x)=\frac{7x+3}{x}
slope of 3x-y=7
slope\:3x-y=7
inverse of f(x)=\sqrt[3]{x^2-8}
inverse\:f(x)=\sqrt[3]{x^{2}-8}
perpendicular-1/5
perpendicular\:-\frac{1}{5}
inverse of f(x)=sqrt(2x)-8
inverse\:f(x)=\sqrt{2x}-8
domain of (7x-21)/((x-7)(x+1))
domain\:\frac{7x-21}{(x-7)(x+1)}
1
..
35
36
37
38
39
..
1324