Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^{4z}-4e^{-4z}
derivative\:e^{4z}-4e^{-4z}
(\partial)/(\partial y)(sin(x)sin(y))
\frac{\partial\:}{\partial\:y}(\sin(x)\sin(y))
(x+y)dx-(x-y)dy=0,y(1)=0
(x+y)dx-(x-y)dy=0,y(1)=0
integral of s/(s^2+6s+11)
\int\:\frac{s}{s^{2}+6s+11}ds
derivative of f(x)=sqrt(4x-3)
derivative\:f(x)=\sqrt{4x-3}
integral of-2cos(2x)
\int\:-2\cos(2x)dx
limit as x approaches 4/pi of cos(x)
\lim\:_{x\to\:\frac{4}{π}}(\cos(x))
derivative of \sqrt[3]{x}-6/x
\frac{d}{dx}(\sqrt[3]{x}-\frac{6}{x})
derivative of 1/8 x^8-x^4
\frac{d}{dx}(\frac{1}{8}x^{8}-x^{4})
derivative of ln(x^2-4x)
derivative\:\ln(x^{2}-4x)
(arcsin((2x)/(1+x^2)))^'
(\arcsin(\frac{2x}{1+x^{2}}))^{\prime\:}
derivative of x^4+x^3+2
derivative\:x^{4}+x^{3}+2
(\partial)/(\partial x)(sin(y)cos(x))
\frac{\partial\:}{\partial\:x}(\sin(y)\cos(x))
tangent of-8x^2+5
tangent\:-8x^{2}+5
integral of (4t)/(sqrt(1-16t^4))
\int\:\frac{4t}{\sqrt{1-16t^{4}}}dt
integral of sin(t)sec^5(t)
\int\:\sin(t)\sec^{5}(t)dt
limit as x approaches 0 of (x)x
\lim\:_{x\to\:0}((x)x)
integral of arccos(sqrt((1+x)/2))
\int\:\arccos(\sqrt{\frac{1+x}{2}})dx
integral of 1/(sqrt(1+u^2))
\int\:\frac{1}{\sqrt{1+u^{2}}}du
area y=x^2,y=x+6
area\:y=x^{2},y=x+6
derivative of-ln(-x)
\frac{d}{dx}(-\ln(-x))
derivative of f(x)=(e^x)/(2x+1)
derivative\:f(x)=\frac{e^{x}}{2x+1}
y^{''}+11y^'+30y=0
y^{\prime\:\prime\:}+11y^{\prime\:}+30y=0
extreme f(x,y)=sqrt(x^2+y^2)
extreme\:f(x,y)=\sqrt{x^{2}+y^{2}}
derivative of ln(16x)
derivative\:\ln(16x)
derivative of y=a^x
derivative\:y=a^{x}
tangent of f(x)=3-4x^2,(2,-13)
tangent\:f(x)=3-4x^{2},(2,-13)
derivative of ln(1/x)
derivative\:\ln(\frac{1}{x})
integral of (x+1)/(2+4x^2)
\int\:\frac{x+1}{2+4x^{2}}dx
derivative of x^3cot(x)
\frac{d}{dx}(x^{3}\cot(x))
integral of ((sin(sqrt(w))))/(sqrt(w))
\int\:\frac{(\sin(\sqrt{w}))}{\sqrt{w}}dw
inverse oflaplace ((s-2))/((s-2)^2-3)
inverselaplace\:\frac{(s-2)}{(s-2)^{2}-3}
integral of ((e^x))/(1+e^x)
\int\:\frac{(e^{x})}{1+e^{x}}dx
derivative of y=4tsqrt(t+7)
derivative\:y=4t\sqrt{t+7}
integral from-2 to 2 of x^2-1
\int\:_{-2}^{2}x^{2}-1dx
derivative of f(x)=2e^{-x}
derivative\:f(x)=2e^{-x}
integral of 4sin^4(x)cos^2(x)
\int\:4\sin^{4}(x)\cos^{2}(x)dx
taylor 1/(2+5x)
taylor\:\frac{1}{2+5x}
(dy)/(dx)=y^2-9
\frac{dy}{dx}=y^{2}-9
derivative of 5x^3+x^2+1/x
\frac{d}{dx}(5x^{3}+x^{2}+\frac{1}{x})
derivative of 2(5-9x^5)
\frac{d}{dx}(2(5-9x)^{5})
integral of (1-x)/(1-x^2)
\int\:\frac{1-x}{1-x^{2}}dx
integral from 0 to 2 of (x^2-2x)
\int\:_{0}^{2}(x^{2}-2x)dx
integral of sin^2(x+4)
\int\:\sin^{2}(x+4)dx
integral from 1 to infinity of xe^{-4x}
\int\:_{1}^{\infty\:}xe^{-4x}dx
integral of sin^4(4θ)
\int\:\sin^{4}(4θ)dθ
integral of ((16)/(1+x^2))
\int\:(\frac{16}{1+x^{2}})dx
derivative of sin(x^2)
derivative\:\sin(x^{2})
derivative of x*e^{4x}
\frac{d}{dx}(x\cdot\:e^{4x})
integral of ((x+2))/(x^2+3x-4)
\int\:\frac{(x+2)}{x^{2}+3x-4}dx
integral of ((e^{sqrt(x)}-3))/(sqrt(x))
\int\:\frac{(e^{\sqrt{x}}-3)}{\sqrt{x}}dx
integral of cos(nt)
\int\:\cos(nt)dt
derivative of x^3(x-4)
\frac{d}{dx}(x^{3}(x-4))
derivative of 91-90e^{-0.2t}
derivative\:91-90e^{-0.2t}
inverse oflaplace 6/s+16*1/(s^2+16)
inverselaplace\:\frac{6}{s}+16\cdot\:\frac{1}{s^{2}+16}
tangent of f(x)= 2/(4-x),\at x=-1
tangent\:f(x)=\frac{2}{4-x},\at\:x=-1
(sin^2(x))^'
(\sin^{2}(x))^{\prime\:}
derivative of 4x^{1/3}
\frac{d}{dx}(4x^{\frac{1}{3}})
area 5x-x^2,0
area\:5x-x^{2},0
limit as h approaches 0 of h
\lim\:_{h\to\:0}(h)
2x^2y+x^3((dy)/(dx))=1
2x^{2}y+x^{3}(\frac{dy}{dx})=1
derivative of f(x)=(ln(sqrt(x)))/x
derivative\:f(x)=\frac{\ln(\sqrt{x})}{x}
limit as x approaches 0 of (e^{2x}-5x)^2
\lim\:_{x\to\:0}((e^{2x}-5x)^{2})
integral of 9/(x(x^4+8))
\int\:\frac{9}{x(x^{4}+8)}dx
tangent of y=(5x)/(x+4),(1,1)
tangent\:y=\frac{5x}{x+4},(1,1)
integral of (cos(x))/(sin(2x))
\int\:\frac{\cos(x)}{\sin(2x)}dx
taylor 1/(x^2),2
taylor\:\frac{1}{x^{2}},2
(2x^2y+2sqrt(1+x^4y^2))dx+x^3dy=0
(2x^{2}y+2\sqrt{1+x^{4}y^{2}})dx+x^{3}dy=0
derivative of (4x+3^4(x+1)^{-3})
\frac{d}{dx}((4x+3)^{4}(x+1)^{-3})
(dq)/(dt)+1/(5*10^{-9)}q= 200/1000
\frac{dq}{dt}+\frac{1}{5\cdot\:10^{-9}}q=\frac{200}{1000}
integral of ((ln^6(x)))/x
\int\:\frac{(\ln^{6}(x))}{x}dx
derivative of e^{(x+y}-1)
\frac{d}{dx}(e^{(x+y)}-1)
tangent of f(x)=(1+5x)^9,(0,1)
tangent\:f(x)=(1+5x)^{9},(0,1)
taylor e^{-x},1
taylor\:e^{-x},1
(\partial)/(\partial x)((cos(x))^2)
\frac{\partial\:}{\partial\:x}((\cos(x))^{2})
tangent of-1/((x-6)^2)
tangent\:-\frac{1}{(x-6)^{2}}
integral of csc(4x)
\int\:\csc(4x)dx
derivative of arcsinh(x)
\frac{d}{dx}(\arcsinh(x))
d/(dt)(\sqrt[3]{t}(t^2+4))
\frac{d}{dt}(\sqrt[3]{t}(t^{2}+4))
integral of-4/(x^2)
\int\:-\frac{4}{x^{2}}dx
(dy)/(dx)= y/(y^2),y(0)=2
\frac{dy}{dx}=\frac{y}{y^{2}},y(0)=2
sum from n=1 to infinity of 1/(2+sin(n))
\sum\:_{n=1}^{\infty\:}\frac{1}{2+\sin(n)}
derivative of e^{14x}
\frac{d}{dx}(e^{14x})
integral of (x^2)/(\sqrt[3]{1+2x)}
\int\:\frac{x^{2}}{\sqrt[3]{1+2x}}dx
derivative of (x-2^2)
\frac{d}{dx}((x-2)^{2})
2(sqrt(xy)-y)dx-xdy=0
2(\sqrt{xy}-y)dx-xdy=0
integral of 1/(x^{1/2)}
\int\:\frac{1}{x^{\frac{1}{2}}}dx
integral of x*ln(5+x)
\int\:x\cdot\:\ln(5+x)dx
integral of pi/2-5x^{-0.5}
\int\:\frac{π}{2}-5x^{-0.5}dx
(d^3)/(dx^3)(x^4-8x^3)
\frac{d^{3}}{dx^{3}}(x^{4}-8x^{3})
derivative of e^{cos(sqrt(x+3)})
\frac{d}{dx}(e^{\cos(\sqrt{x+3})})
-8t^2y^{''}-4t(t-4)y^'+4(t-4)y=0
-8t^{2}y^{\prime\:\prime\:}-4t(t-4)y^{\prime\:}+4(t-4)y=0
area y^2=x,x-2y=3
area\:y^{2}=x,x-2y=3
derivative of 3x(x^2-x+1(5x-3))
\frac{d}{dx}(3x(x^{2}-x+1)(5x-3))
(dy)/(dt)=-2y,y(0)= 1/10
\frac{dy}{dt}=-2y,y(0)=\frac{1}{10}
tangent of x^2-8
tangent\:x^{2}-8
derivative of sin(2xcos(2x))
\frac{d}{dx}(\sin(2x)\cos(2x))
tangent of f(x)=x^3,\at x=6
tangent\:f(x)=x^{3},\at\:x=6
integral of-9x
\int\:-9xdx
limit as x approaches 2 of sqrt(51-x)-7
\lim\:_{x\to\:2}(\sqrt{51-x}-7)
1
..
11
12
13
14
15
..
2459