Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)+cos^4(x)+cos^6(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)+cos4(x)+cos6(x)=0

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
cos2(x)+cos4(x)+cos6(x)=0
Solve by substitution
cos2(x)+cos4(x)+cos6(x)=0
Let: cos(x)=uu2+u4+u6=0
u2+u4+u6=0:u=0,u=21​+23​​i,u=−21​−23​​i,u=−21​+23​​i,u=21​−23​​i
u2+u4+u6=0
Write in the standard form an​xn+…+a1​x+a0​=0u6+u4+u2=0
Rewrite the equation with a=u2,a2=u4 and a3=u6a3+a2+a=0
Solve a3+a2+a=0:a=0,a=−21​+i23​​,a=−21​−i23​​
a3+a2+a=0
Factor a3+a2+a:a(a2+a+1)
a3+a2+a
Apply exponent rule: ab+c=abaca2=aa=a2a+aa+a
Factor out common term a=a(a2+a+1)
a(a2+a+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0a=0ora2+a+1=0
Solve a2+a+1=0:a=−21​+i23​​,a=−21​−i23​​
a2+a+1=0
Solve with the quadratic formula
a2+a+1=0
Quadratic Equation Formula:
For a=1,b=1,c=1a1,2​=2⋅1−1±12−4⋅1⋅1​​
a1,2​=2⋅1−1±12−4⋅1⋅1​​
Simplify 12−4⋅1⋅1​:3​i
12−4⋅1⋅1​
Apply rule 1a=112=1=1−4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1−4​
Subtract the numbers: 1−4=−3=−3​
Apply radical rule: −a​=−1​a​−3​=−1​3​=−1​3​
Apply imaginary number rule: −1​=i=3​i
a1,2​=2⋅1−1±3​i​
Separate the solutionsa1​=2⋅1−1+3​i​,a2​=2⋅1−1−3​i​
a=2⋅1−1+3​i​:−21​+i23​​
2⋅1−1+3​i​
Multiply the numbers: 2⋅1=2=2−1+3​i​
Rewrite 2−1+3​i​ in standard complex form: −21​+23​​i
2−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1+3​i​=−21​+23​i​=−21​+23​i​
=−21​+23​​i
a=2⋅1−1−3​i​:−21​−i23​​
2⋅1−1−3​i​
Multiply the numbers: 2⋅1=2=2−1−3​i​
Rewrite 2−1−3​i​ in standard complex form: −21​−23​​i
2−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​2−1−3​i​=−21​−23​i​=−21​−23​i​
=−21​−23​​i
The solutions to the quadratic equation are:a=−21​+i23​​,a=−21​−i23​​
The solutions area=0,a=−21​+i23​​,a=−21​−i23​​
a=0,a=−21​+i23​​,a=−21​−i23​​
Substitute back a=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=−21​+i23​​:u=21​+23​​i,u=−21​−23​​i
u2=−21​+i23​​
Substitute u=a+bi(a+bi)2=−21​+i23​​
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=−21​+i23​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=−21​2ab=23​​​]
[a2−b2=−21​2ab=23​​​]:(a=21​,a=−21​,​b=23​​b=−23​​​)
[a2−b2=−21​2ab=23​​​]
Isolate afor 2ab=23​​:a=4b3​​
2ab=23​​
Divide both sides by 2b
2ab=23​​
Divide both sides by 2b2b2ab​=2b23​​​
Simplify
2b2ab​=2b23​​​
Simplify 2b2ab​:a
2b2ab​
Divide the numbers: 22​=1=bab​
Cancel the common factor: b=a
Simplify 2b23​​​:4b3​​
2b23​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2b3​​
Multiply the numbers: 2⋅2=4=4b3​​
a=4b3​​
a=4b3​​
a=4b3​​
Plug the solutions a=4b3​​ into a2−b2=−21​
For a2−b2=−21​, subsitute a with 4b3​​:b=23​​,b=−23​​
For a2−b2=−21​, subsitute a with 4b3​​(4b3​​)2−b2=−21​
Solve (4b3​​)2−b2=−21​:b=23​​,b=−23​​
(4b3​​)2−b2=−21​
Multiply by LCM
(4b3​​)2−b2=−21​
Simplify (4b3​​)2:16b23​
(4b3​​)2
Apply exponent rule: (ba​)c=bcac​=(4b)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(4b)2=42b2=42b2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42b23​
42=16=16b23​
16b23​−b2=−21​
Find Least Common Multiplier of 16b2,2:16b2
16b2,2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 16,2:16
16,2
Least Common Multiplier (LCM)
Prime factorization of 16:2⋅2⋅2⋅2
16
16divides by 216=8⋅2=2⋅8
8divides by 28=4⋅2=2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 16 or 2=2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2=16=16
Compute an expression comprised of factors that appear either in 16b2 or 2=16b2
Multiply by LCM=16b216b23​⋅16b2−b2⋅16b2=−21​⋅16b2
Simplify
16b23​⋅16b2−b2⋅16b2=−21​⋅16b2
Simplify 16b23​⋅16b2:3
16b23​⋅16b2
Multiply fractions: a⋅cb​=ca⋅b​=16b23⋅16b2​
Cancel the common factor: 16=b23b2​
Cancel the common factor: b2=3
Simplify −b2⋅16b2:−16b4
−b2⋅16b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−16b2+2
Add the numbers: 2+2=4=−16b4
Simplify −21​⋅16b2:−8b2
−21​⋅16b2
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅16​b2
21⋅16​=8
21⋅16​
Multiply the numbers: 1⋅16=16=216​
Divide the numbers: 216​=8=8
=−8b2
3−16b4=−8b2
3−16b4=−8b2
3−16b4=−8b2
Solve 3−16b4=−8b2:b=23​​,b=−23​​
3−16b4=−8b2
Move 8b2to the left side
3−16b4=−8b2
Add 8b2 to both sides3−16b4+8b2=−8b2+8b2
Simplify3−16b4+8b2=0
3−16b4+8b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−16b4+8b2+3=0
Rewrite the equation with u=b2 and u2=b4−16u2+8u+3=0
Solve −16u2+8u+3=0:u=−41​,u=43​
−16u2+8u+3=0
Solve with the quadratic formula
−16u2+8u+3=0
Quadratic Equation Formula:
For a=−16,b=8,c=3u1,2​=2(−16)−8±82−4(−16)⋅3​​
u1,2​=2(−16)−8±82−4(−16)⋅3​​
82−4(−16)⋅3​=16
82−4(−16)⋅3​
Apply rule −(−a)=a=82+4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=82+192​
82=64=64+192​
Add the numbers: 64+192=256=256​
Factor the number: 256=162=162​
Apply radical rule: 162​=16=16
u1,2​=2(−16)−8±16​
Separate the solutionsu1​=2(−16)−8+16​,u2​=2(−16)−8−16​
u=2(−16)−8+16​:−41​
2(−16)−8+16​
Remove parentheses: (−a)=−a=−2⋅16−8+16​
Add/Subtract the numbers: −8+16=8=−2⋅168​
Multiply the numbers: 2⋅16=32=−328​
Apply the fraction rule: −ba​=−ba​=−328​
Cancel the common factor: 8=−41​
u=2(−16)−8−16​:43​
2(−16)−8−16​
Remove parentheses: (−a)=−a=−2⋅16−8−16​
Subtract the numbers: −8−16=−24=−2⋅16−24​
Multiply the numbers: 2⋅16=32=−32−24​
Apply the fraction rule: −b−a​=ba​=3224​
Cancel the common factor: 8=43​
The solutions to the quadratic equation are:u=−41​,u=43​
u=−41​,u=43​
Substitute back u=b2,solve for b
Solve b2=−41​:No Solution for b∈R
b2=−41​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=43​:b=23​​,b=−23​​
b2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=43​​,b=−43​​
43​​=23​​
43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=23​​
−43​​=−23​​
−43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−23​​
b=23​​,b=−23​​
The solutions are
b=23​​,b=−23​​
b=23​​,b=−23​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (4b3​​)2−b2 and compare to zero
Solve 4b=0:b=0
4b=0
Divide both sides by 4
4b=0
Divide both sides by 444b​=40​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=23​​,b=−23​​
Plug the solutions b=23​​,b=−23​​ into 2ab=23​​
For 2ab=23​​, subsitute b with 23​​:a=21​
For 2ab=23​​, subsitute b with 23​​2a23​​=23​​
Solve 2a23​​=23​​:a=21​
2a23​​=23​​
Multiply both sides by 2
2a23​​=23​​
Multiply both sides by 22⋅2a23​​=223​​
Simplify23​a=3​
23​a=3​
Divide both sides by 23​
23​a=3​
Divide both sides by 23​23​23​a​=23​3​​
Simplifya=21​
a=21​
For 2ab=23​​, subsitute b with −23​​:a=−21​
For 2ab=23​​, subsitute b with −23​​2a(−23​​)=23​​
Solve 2a(−23​​)=23​​:a=−21​
2a(−23​​)=23​​
Divide both sides by 2(−23​​)
2a(−23​​)=23​​
Divide both sides by 2(−23​​)2(−23​​)2a(−23​​)​=2(−23​​)23​​​
Simplify
2(−23​​)2a(−23​​)​=2(−23​​)23​​​
Simplify 2(−23​​)2a(−23​​)​:a
2(−23​​)2a(−23​​)​
Simplify 2(−23​​)2a(−23​​)​:−2⋅23​​−2a23​​​
2(−23​​)2a(−23​​)​
Apply rule: a(−b)=−ab2a(−23​​)=−2a23​​=2(−23​​)−2a23​​​
Apply rule: a(−b)=−ab2(−23​​)=−2⋅23​​=−2⋅23​​−2a23​​​
=−2⋅23​​−2a23​​​
Cancel the common factor: −2=23​​a23​​​
Cancel the common factor: 23​​=a
Simplify 2(−23​​)23​​​:−21​
2(−23​​)23​​​
Apply rule: a(−b)=−ab2(−23​​)=−2⋅23​​=−2⋅23​​23​​​
Apply the fraction rule: aa​=123​​23​​​=1=−21​
Apply the fraction rule: −ba​=−ba​=−21​
a=−21​
a=−21​
a=−21​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=−21​
Remove the ones that don't agree with the equation.
Check the solution a=−21​,b=−23​​:True
a2−b2=−21​
Plug in a=−21​,b=−23​​(−21​)2−(−23​​)2=−21​
Refine−21​=−21​
True
Check the solution a=21​,b=23​​:True
a2−b2=−21​
Plug in a=21​,b=23​​(21​)2−(23​​)2=−21​
Refine−21​=−21​
True
Check the solutions by plugging them into 2ab=23​​
Remove the ones that don't agree with the equation.
Check the solution a=−21​,b=−23​​:True
2ab=23​​
Plug in a=−21​,b=−23​​2(−21​)(−23​​)=23​​
Refine23​​=23​​
True
Check the solution a=21​,b=23​​:True
2ab=23​​
Plug in a=21​,b=23​​2⋅21​⋅23​​=23​​
Refine23​​=23​​
True
Therefore, the final solutions for a2−b2=−21​,2ab=23​​ are (a=21​,a=−21​,​b=23​​b=−23​​​)
Substitute back u=a+biu=21​+23​​i,u=−21​−23​​i
Solve u2=−21​−i23​​:u=−21​+23​​i,u=21​−23​​i
u2=−21​−i23​​
Substitute u=a+bi(a+bi)2=−21​−i23​​
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=−21​−i23​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=−21​2ab=−23​​​]
[a2−b2=−21​2ab=−23​​​]:(a=−21​,a=21​,​b=23​​b=−23​​​)
[a2−b2=−21​2ab=−23​​​]
Isolate afor 2ab=−23​​:a=−4b3​​
2ab=−23​​
Divide both sides by 2b
2ab=−23​​
Divide both sides by 2b2b2ab​=2b−23​​​
Simplify
2b2ab​=2b−23​​​
Simplify 2b2ab​:a
2b2ab​
Divide the numbers: 22​=1=bab​
Cancel the common factor: b=a
Simplify 2b−23​​​:−4b3​​
2b−23​​​
Apply the fraction rule: b−a​=−ba​=−2b23​​​
Apply the fraction rule: acb​​=c⋅ab​2b23​​​=2⋅2b3​​=−2⋅2b3​​
Multiply the numbers: 2⋅2=4=−4b3​​
a=−4b3​​
a=−4b3​​
a=−4b3​​
Plug the solutions a=−4b3​​ into a2−b2=−21​
For a2−b2=−21​, subsitute a with −4b3​​:b=23​​,b=−23​​
For a2−b2=−21​, subsitute a with −4b3​​(−4b3​​)2−b2=−21​
Solve (−4b3​​)2−b2=−21​:b=23​​,b=−23​​
(−4b3​​)2−b2=−21​
Multiply by LCM
(−4b3​​)2−b2=−21​
Simplify (−4b3​​)2:16b23​
(−4b3​​)2
Apply exponent rule: (−a)n=an,if n is even(−4b3​​)2=(4b3​​)2=(4b3​​)2
Apply exponent rule: (ba​)c=bcac​=(4b)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(4b)2=42b2=42b2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42b23​
42=16=16b23​
16b23​−b2=−21​
Find Least Common Multiplier of 16b2,2:16b2
16b2,2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 16,2:16
16,2
Least Common Multiplier (LCM)
Prime factorization of 16:2⋅2⋅2⋅2
16
16divides by 216=8⋅2=2⋅8
8divides by 28=4⋅2=2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 16 or 2=2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2=16=16
Compute an expression comprised of factors that appear either in 16b2 or 2=16b2
Multiply by LCM=16b216b23​⋅16b2−b2⋅16b2=−21​⋅16b2
Simplify
16b23​⋅16b2−b2⋅16b2=−21​⋅16b2
Simplify 16b23​⋅16b2:3
16b23​⋅16b2
Multiply fractions: a⋅cb​=ca⋅b​=16b23⋅16b2​
Cancel the common factor: 16=b23b2​
Cancel the common factor: b2=3
Simplify −b2⋅16b2:−16b4
−b2⋅16b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−16b2+2
Add the numbers: 2+2=4=−16b4
Simplify −21​⋅16b2:−8b2
−21​⋅16b2
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅16​b2
21⋅16​=8
21⋅16​
Multiply the numbers: 1⋅16=16=216​
Divide the numbers: 216​=8=8
=−8b2
3−16b4=−8b2
3−16b4=−8b2
3−16b4=−8b2
Solve 3−16b4=−8b2:b=23​​,b=−23​​
3−16b4=−8b2
Move 8b2to the left side
3−16b4=−8b2
Add 8b2 to both sides3−16b4+8b2=−8b2+8b2
Simplify3−16b4+8b2=0
3−16b4+8b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−16b4+8b2+3=0
Rewrite the equation with u=b2 and u2=b4−16u2+8u+3=0
Solve −16u2+8u+3=0:u=−41​,u=43​
−16u2+8u+3=0
Solve with the quadratic formula
−16u2+8u+3=0
Quadratic Equation Formula:
For a=−16,b=8,c=3u1,2​=2(−16)−8±82−4(−16)⋅3​​
u1,2​=2(−16)−8±82−4(−16)⋅3​​
82−4(−16)⋅3​=16
82−4(−16)⋅3​
Apply rule −(−a)=a=82+4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=82+192​
82=64=64+192​
Add the numbers: 64+192=256=256​
Factor the number: 256=162=162​
Apply radical rule: 162​=16=16
u1,2​=2(−16)−8±16​
Separate the solutionsu1​=2(−16)−8+16​,u2​=2(−16)−8−16​
u=2(−16)−8+16​:−41​
2(−16)−8+16​
Remove parentheses: (−a)=−a=−2⋅16−8+16​
Add/Subtract the numbers: −8+16=8=−2⋅168​
Multiply the numbers: 2⋅16=32=−328​
Apply the fraction rule: −ba​=−ba​=−328​
Cancel the common factor: 8=−41​
u=2(−16)−8−16​:43​
2(−16)−8−16​
Remove parentheses: (−a)=−a=−2⋅16−8−16​
Subtract the numbers: −8−16=−24=−2⋅16−24​
Multiply the numbers: 2⋅16=32=−32−24​
Apply the fraction rule: −b−a​=ba​=3224​
Cancel the common factor: 8=43​
The solutions to the quadratic equation are:u=−41​,u=43​
u=−41​,u=43​
Substitute back u=b2,solve for b
Solve b2=−41​:No Solution for b∈R
b2=−41​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=43​:b=23​​,b=−23​​
b2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=43​​,b=−43​​
43​​=23​​
43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=23​​
−43​​=−23​​
−43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−23​​
b=23​​,b=−23​​
The solutions are
b=23​​,b=−23​​
b=23​​,b=−23​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (−4b3​​)2−b2 and compare to zero
Solve 4b=0:b=0
4b=0
Divide both sides by 4
4b=0
Divide both sides by 444b​=40​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=23​​,b=−23​​
Plug the solutions b=23​​,b=−23​​ into 2ab=−23​​
For 2ab=−23​​, subsitute b with 23​​:a=−21​
For 2ab=−23​​, subsitute b with 23​​2a23​​=−23​​
Solve 2a23​​=−23​​:a=−21​
2a23​​=−23​​
Multiply both sides by 2
2a23​​=−23​​
Multiply both sides by 22⋅2a23​​=2(−23​​)
Simplify
2⋅2a23​​=2(−23​​)
Simplify 2⋅2a23​​:23​a
2⋅2a23​​
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
=22a23​​
Apply the fraction rule: a⋅cb​=ca⋅b​=222a3​​
Cancel 222a3​​:2a3​
222a3​​
222​=2
222​
Apply exponent rule: xbxa​=xa−b=22−1
Subtract the numbers: 2−1=1=21
Apply exponent rule: a1=a=2
=2a3​
=2a3​
=23​a
Simplify 2(−23​​):−3​
2(−23​​)
Apply rule: a(−b)=−ab2(−23​​)=−2⋅23​​=−2⋅23​​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−12​⋅23​​
Cross-cancel common factor: 2=−13​​
Apply the fraction rule: 1a​=a=−3​
23​a=−3​
23​a=−3​
23​a=−3​
Divide both sides by 23​
23​a=−3​
Divide both sides by 23​23​23​a​=23​−3​​
Simplify
23​23​a​=23​−3​​
Simplify 23​23​a​:a
23​23​a​
Cancel the common factor: 2=3​3​a​
Cancel the common factor: 3​=a
Simplify 23​−3​​:−21​
23​−3​​
Cancel the common factor: 3​=2−1​
Apply the fraction rule: b−a​=−ba​=−21​
a=−21​
a=−21​
a=−21​
For 2ab=−23​​, subsitute b with −23​​:a=21​
For 2ab=−23​​, subsitute b with −23​​2a(−23​​)=−23​​
Solve 2a(−23​​)=−23​​:a=21​
2a(−23​​)=−23​​
Divide both sides by 2(−23​​)
2a(−23​​)=−23​​
Divide both sides by 2(−23​​)2(−23​​)2a(−23​​)​=2(−23​​)−23​​​
Simplify
2(−23​​)2a(−23​​)​=2(−23​​)−23​​​
Simplify 2(−23​​)2a(−23​​)​:a
2(−23​​)2a(−23​​)​
Simplify 2(−23​​)2a(−23​​)​:−2⋅23​​−2a23​​​
2(−23​​)2a(−23​​)​
Apply rule: a(−b)=−ab2a(−23​​)=−2a23​​=2(−23​​)−2a23​​​
Apply rule: a(−b)=−ab2(−23​​)=−2⋅23​​=−2⋅23​​−2a23​​​
=−2⋅23​​−2a23​​​
Cancel the common factor: −2=23​​a23​​​
Cancel the common factor: 23​​=a
Simplify 2(−23​​)−23​​​:21​
2(−23​​)−23​​​
Apply rule: a(−b)=−ab2(−23​​)=−2⋅23​​=−2⋅23​​−23​​​
Apply the fraction rule: −b−a​=ba​=2⋅23​​23​​​
Apply the fraction rule: aa​=123​​23​​​=1=21​
a=21​
a=21​
a=21​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=−21​
Remove the ones that don't agree with the equation.
Check the solution a=21​,b=−23​​:True
a2−b2=−21​
Plug in a=21​,b=−23​​(21​)2−(−23​​)2=−21​
Refine−21​=−21​
True
Check the solution a=−21​,b=23​​:True
a2−b2=−21​
Plug in a=−21​,b=23​​(−21​)2−(23​​)2=−21​
Refine−21​=−21​
True
Check the solutions by plugging them into 2ab=−23​​
Remove the ones that don't agree with the equation.
Check the solution a=21​,b=−23​​:True
2ab=−23​​
Plug in a=21​,b=−23​​2⋅21​(−23​​)=−23​​
Refine−23​​=−23​​
True
Check the solution a=−21​,b=23​​:True
2ab=−23​​
Plug in a=−21​,b=23​​2(−21​)23​​=−23​​
Refine−23​​=−23​​
True
Therefore, the final solutions for a2−b2=−21​,2ab=−23​​ are (a=−21​,a=21​,​b=23​​b=−23​​​)
Substitute back u=a+biu=−21​+23​​i,u=21​−23​​i
The solutions are
u=0,u=21​+23​​i,u=−21​−23​​i,u=−21​+23​​i,u=21​−23​​i
Substitute back u=cos(x)cos(x)=0,cos(x)=21​+23​​i,cos(x)=−21​−23​​i,cos(x)=−21​+23​​i,cos(x)=21​−23​​i
cos(x)=0,cos(x)=21​+23​​i,cos(x)=−21​−23​​i,cos(x)=−21​+23​​i,cos(x)=21​−23​​i
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=21​+23​​i:No Solution
cos(x)=21​+23​​i
NoSolution
cos(x)=−21​−23​​i:No Solution
cos(x)=−21​−23​​i
NoSolution
cos(x)=−21​+23​​i:No Solution
cos(x)=−21​+23​​i
NoSolution
cos(x)=21​−23​​i:No Solution
cos(x)=21​−23​​i
NoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(-1)/4sin^4(x)-sin^2(x)=0(cos(t)-4)(2sin^2(t)-1)=0sin(75)= x/9solvefor i,2cos^3(x)+sin(x)+1=2sin^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^2(x)+cos^4(x)+cos^6(x)=0 ?

    The general solution for cos^2(x)+cos^4(x)+cos^6(x)=0 is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024