Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(x)cos(x)-sin(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(x)cos(x)−sin(x)=1

Solution

x=23π​+2πn,x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=270∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Solution steps
cot(x)cos(x)−sin(x)=1
Subtract 1 from both sidescot(x)cos(x)−sin(x)−1=0
Rewrite using trig identities
−1−sin(x)+cos(x)cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1−sin(x)+cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=−1−sin(x)+sin(x)cos2(x)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1+sin(x)1−sin2(x)​−sin(x)
Combine the fractions sin(x)−sin2(x)+1​−sin(x):sin(x)1−2sin2(x)​
sin(x)−sin2(x)+1​−sin(x)
Convert element to fraction: sin(x)=sin(x)sin(x)sin(x)​=sin(x)1−sin2(x)​−sin(x)sin(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1−sin2(x)−sin(x)sin(x)​
1−sin2(x)−sin(x)sin(x)=1−2sin2(x)
1−sin2(x)−sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=1−sin2(x)−sin2(x)
Add similar elements: −sin2(x)−sin2(x)=−2sin2(x)=1−2sin2(x)
=sin(x)1−2sin2(x)​
−1+sin(x)1−2sin2(x)​=0
−1+sin(x)1−2sin2(x)​=0
Solve by substitution
−1+sin(x)1−2sin2(x)​=0
Let: sin(x)=u−1+u1−2u2​=0
−1+u1−2u2​=0:u=−1,u=21​
−1+u1−2u2​=0
Multiply both sides by u
−1+u1−2u2​=0
Multiply both sides by u−1⋅u+u1−2u2​u=0⋅u
Simplify
−1⋅u+u1−2u2​u=0⋅u
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify u1−2u2​u:1−2u2
u1−2u2​u
Multiply fractions: a⋅cb​=ca⋅b​=u(1−2u2)u​
Cancel the common factor: u=1−2u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−u+1−2u2=0
−u+1−2u2=0
−u+1−2u2=0
Solve −u+1−2u2=0:u=−1,u=21​
−u+1−2u2=0
Write in the standard form ax2+bx+c=0−2u2−u+1=0
Solve with the quadratic formula
−2u2−u+1=0
Quadratic Equation Formula:
For a=−2,b=−1,c=1u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
(−1)2−4(−2)⋅1​=3
(−1)2−4(−2)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅2⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multiply the numbers: 4⋅2⋅1=8=8
=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2(−2)−(−1)±3​
Separate the solutionsu1​=2(−2)−(−1)+3​,u2​=2(−2)−(−1)−3​
u=2(−2)−(−1)+3​:−1
2(−2)−(−1)+3​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅21+3​
Add the numbers: 1+3=4=−2⋅24​
Multiply the numbers: 2⋅2=4=−44​
Apply the fraction rule: −ba​=−ba​=−44​
Apply rule aa​=1=−1
u=2(−2)−(−1)−3​:21​
2(−2)−(−1)−3​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅21−3​
Subtract the numbers: 1−3=−2=−2⋅2−2​
Multiply the numbers: 2⋅2=4=−4−2​
Apply the fraction rule: −b−a​=ba​=42​
Cancel the common factor: 2=21​
The solutions to the quadratic equation are:u=−1,u=21​
u=−1,u=21​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −1+u1−2u2​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=21​
Substitute back u=sin(x)sin(x)=−1,sin(x)=21​
sin(x)=−1,sin(x)=21​
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=23π​+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^4(x)+cos^3(x)-2=0tan^2(x)= 1/(cos(x)+1)(sin^2(x)-2cos(x)+1)/4 =0cos^2(x)+cos^4(x)+cos^6(x)=0sin(x)=(-1)/4

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(x)cos(x)-sin(x)=1 ?

    The general solution for cot(x)cos(x)-sin(x)=1 is x=(3pi)/2+2pin,x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024