Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1+7sinh(x)=4cosh^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+7sinh(x)=4cosh2(x)

Solution

x=ln(2),x=ln(1+2​)
+1
Degrees
x=39.71440…∘,x=50.49898…∘
Solution steps
1+7sinh(x)=4cosh2(x)
Rewrite using trig identities
1+7sinh(x)=4cosh2(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​1+7⋅2ex−e−x​=4cosh2(x)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​1+7⋅2ex−e−x​=4(2ex+e−x​)2
1+7⋅2ex−e−x​=4(2ex+e−x​)2
1+7⋅2ex−e−x​=4(2ex+e−x​)2:x=ln(2),x=ln(1+2​)
1+7⋅2ex−e−x​=4(2ex+e−x​)2
Apply exponent rules
1+7⋅2ex−e−x​=4(2ex+e−x​)2
Apply exponent rule: abc=(ab)ce−x=(ex)−11+7⋅2ex−(ex)−1​=4(2ex+(ex)−1​)2
1+7⋅2ex−(ex)−1​=4(2ex+(ex)−1​)2
Rewrite the equation with ex=u1+7⋅2u−(u)−1​=4(2u+(u)−1​)2
Solve 1+7⋅2u−u−1​=4(2u+u−1​)2:u=2,u=−21​,u=1+2​,u=1−2​
1+7⋅2u−u−1​=4(2u+u−1​)2
Refine1+2u7(u2−1)​=u2(u2+1)2​
Multiply by LCM
1+2u7(u2−1)​=u2(u2+1)2​
Find Least Common Multiplier of 2u,u2:2u2
2u,u2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 2u or u2=2u2
Multiply by LCM=2u21⋅2u2+2u7(u2−1)​⋅2u2=u2(u2+1)2​⋅2u2
Simplify
1⋅2u2+2u7(u2−1)​⋅2u2=u2(u2+1)2​⋅2u2
Simplify 1⋅2u2:2u2
1⋅2u2
Multiply the numbers: 1⋅2=2=2u2
Simplify 2u7(u2−1)​⋅2u2:7u(u2−1)
2u7(u2−1)​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=2u7(u2−1)⋅2u2​
Cancel the common factor: 2=u7(u2−1)u2​
Cancel the common factor: u=7u(u2−1)
Simplify u2(u2+1)2​⋅2u2:2(u2+1)2
u2(u2+1)2​⋅2u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(u2+1)2⋅2u2​
Cancel the common factor: u2=(u2+1)2⋅2
2u2+7u(u2−1)=2(u2+1)2
2u2+7u(u2−1)=2(u2+1)2
2u2+7u(u2−1)=2(u2+1)2
Solve 2u2+7u(u2−1)=2(u2+1)2:u=2,u=−21​,u=1+2​,u=1−2​
2u2+7u(u2−1)=2(u2+1)2
Expand 2u2+7u(u2−1):2u2+7u3−7u
2u2+7u(u2−1)
Expand 7u(u2−1):7u3−7u
7u(u2−1)
Apply the distributive law: a(b−c)=ab−aca=7u,b=u2,c=1=7uu2−7u⋅1
=7u2u−7⋅1⋅u
Simplify 7u2u−7⋅1⋅u:7u3−7u
7u2u−7⋅1⋅u
7u2u=7u3
7u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=7u2+1
Add the numbers: 2+1=3=7u3
7⋅1⋅u=7u
7⋅1⋅u
Multiply the numbers: 7⋅1=7=7u
=7u3−7u
=7u3−7u
=2u2+7u3−7u
Expand 2(u2+1)2:2u4+4u2+2
2(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=2(u4+2u2+1)
Distribute parentheses=2u4+2⋅2u2+2⋅1
Simplify 2u4+2⋅2u2+2⋅1:2u4+4u2+2
2u4+2⋅2u2+2⋅1
Multiply the numbers: 2⋅2=4=2u4+4u2+2⋅1
Multiply the numbers: 2⋅1=2=2u4+4u2+2
=2u4+4u2+2
2u2+7u3−7u=2u4+4u2+2
Switch sides2u4+4u2+2=2u2+7u3−7u
Move 7uto the left side
2u4+4u2+2=2u2+7u3−7u
Add 7u to both sides2u4+4u2+2+7u=2u2+7u3−7u+7u
Simplify2u4+4u2+2+7u=2u2+7u3
2u4+4u2+2+7u=2u2+7u3
Move 7u3to the left side
2u4+4u2+2+7u=2u2+7u3
Subtract 7u3 from both sides2u4+4u2+2+7u−7u3=2u2+7u3−7u3
Simplify2u4+4u2+2+7u−7u3=2u2
2u4+4u2+2+7u−7u3=2u2
Move 2u2to the left side
2u4+4u2+2+7u−7u3=2u2
Subtract 2u2 from both sides2u4+4u2+2+7u−7u3−2u2=2u2−2u2
Simplify2u4−7u3+2u2+7u+2=0
2u4−7u3+2u2+7u+2=0
Factor 2u4−7u3+2u2+7u+2:(u−2)(2u+1)(u2−2u−1)
2u4−7u3+2u2+7u+2
Use the rational root theorem
a0​=2,an​=2
The dividers of a0​:1,2,The dividers of an​:1,2
Therefore, check the following rational numbers:±1,21,2​
12​ is a root of the expression, so factor out u−2
=(u−2)u−22u4−7u3+2u2+7u+2​
u−22u4−7u3+2u2+7u+2​=2u3−3u2−4u−1
u−22u4−7u3+2u2+7u+2​
Divide u−22u4−7u3+2u2+7u+2​:u−22u4−7u3+2u2+7u+2​=2u3+u−2−3u3+2u2+7u+2​
Divide the leading coefficients of the numerator 2u4−7u3+2u2+7u+2
and the divisor u−2:u2u4​=2u3
Quotient=2u3
Multiply u−2 by 2u3:2u4−4u3Subtract 2u4−4u3 from 2u4−7u3+2u2+7u+2 to get new remainderRemainder=−3u3+2u2+7u+2
Thereforeu−22u4−7u3+2u2+7u+2​=2u3+u−2−3u3+2u2+7u+2​
=2u3+u−2−3u3+2u2+7u+2​
Divide u−2−3u3+2u2+7u+2​:u−2−3u3+2u2+7u+2​=−3u2+u−2−4u2+7u+2​
Divide the leading coefficients of the numerator −3u3+2u2+7u+2
and the divisor u−2:u−3u3​=−3u2
Quotient=−3u2
Multiply u−2 by −3u2:−3u3+6u2Subtract −3u3+6u2 from −3u3+2u2+7u+2 to get new remainderRemainder=−4u2+7u+2
Thereforeu−2−3u3+2u2+7u+2​=−3u2+u−2−4u2+7u+2​
=2u3−3u2+u−2−4u2+7u+2​
Divide u−2−4u2+7u+2​:u−2−4u2+7u+2​=−4u+u−2−u+2​
Divide the leading coefficients of the numerator −4u2+7u+2
and the divisor u−2:u−4u2​=−4u
Quotient=−4u
Multiply u−2 by −4u:−4u2+8uSubtract −4u2+8u from −4u2+7u+2 to get new remainderRemainder=−u+2
Thereforeu−2−4u2+7u+2​=−4u+u−2−u+2​
=2u3−3u2−4u+u−2−u+2​
Divide u−2−u+2​:u−2−u+2​=−1
Divide the leading coefficients of the numerator −u+2
and the divisor u−2:u−u​=−1
Quotient=−1
Multiply u−2 by −1:−u+2Subtract −u+2 from −u+2 to get new remainderRemainder=0
Thereforeu−2−u+2​=−1
=2u3−3u2−4u−1
=2u3−3u2−4u−1
Factor 2u3−3u2−4u−1:(2u+1)(u2−2u−1)
2u3−3u2−4u−1
Use the rational root theorem
a0​=1,an​=2
The dividers of a0​:1,The dividers of an​:1,2
Therefore, check the following rational numbers:±1,21​
−21​ is a root of the expression, so factor out 2u+1
=(2u+1)2u+12u3−3u2−4u−1​
2u+12u3−3u2−4u−1​=u2−2u−1
2u+12u3−3u2−4u−1​
Divide 2u+12u3−3u2−4u−1​:2u+12u3−3u2−4u−1​=u2+2u+1−4u2−4u−1​
Divide the leading coefficients of the numerator 2u3−3u2−4u−1
and the divisor 2u+1:2u2u3​=u2
Quotient=u2
Multiply 2u+1 by u2:2u3+u2Subtract 2u3+u2 from 2u3−3u2−4u−1 to get new remainderRemainder=−4u2−4u−1
Therefore2u+12u3−3u2−4u−1​=u2+2u+1−4u2−4u−1​
=u2+2u+1−4u2−4u−1​
Divide 2u+1−4u2−4u−1​:2u+1−4u2−4u−1​=−2u+2u+1−2u−1​
Divide the leading coefficients of the numerator −4u2−4u−1
and the divisor 2u+1:2u−4u2​=−2u
Quotient=−2u
Multiply 2u+1 by −2u:−4u2−2uSubtract −4u2−2u from −4u2−4u−1 to get new remainderRemainder=−2u−1
Therefore2u+1−4u2−4u−1​=−2u+2u+1−2u−1​
=u2−2u+2u+1−2u−1​
Divide 2u+1−2u−1​:2u+1−2u−1​=−1
Divide the leading coefficients of the numerator −2u−1
and the divisor 2u+1:2u−2u​=−1
Quotient=−1
Multiply 2u+1 by −1:−2u−1Subtract −2u−1 from −2u−1 to get new remainderRemainder=0
Therefore2u+1−2u−1​=−1
=u2−2u−1
=u2−2u−1
=(2u+1)(u2−2u−1)
=(u−2)(2u+1)(u2−2u−1)
(u−2)(2u+1)(u2−2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−2=0or2u+1=0oru2−2u−1=0
Solve u−2=0:u=2
u−2=0
Move 2to the right side
u−2=0
Add 2 to both sidesu−2+2=0+2
Simplifyu=2
u=2
Solve 2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
Solve u2−2u−1=0:u=1+2​,u=1−2​
u2−2u−1=0
Solve with the quadratic formula
u2−2u−1=0
Quadratic Equation Formula:
For a=1,b=−2,c=−1u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−1)​​
u1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(−1)​​
(−2)2−4⋅1⋅(−1)​=22​
(−2)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−2)2+4⋅1⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2⋅1−(−2)±22​​
Separate the solutionsu1​=2⋅1−(−2)+22​​,u2​=2⋅1−(−2)−22​​
u=2⋅1−(−2)+22​​:1+2​
2⋅1−(−2)+22​​
Apply rule −(−a)=a=2⋅12+22​​
Multiply the numbers: 2⋅1=2=22+22​​
Factor 2+22​:2(1+2​)
2+22​
Rewrite as=2⋅1+22​
Factor out common term 2=2(1+2​)
=22(1+2​)​
Divide the numbers: 22​=1=1+2​
u=2⋅1−(−2)−22​​:1−2​
2⋅1−(−2)−22​​
Apply rule −(−a)=a=2⋅12−22​​
Multiply the numbers: 2⋅1=2=22−22​​
Factor 2−22​:2(1−2​)
2−22​
Rewrite as=2⋅1−22​
Factor out common term 2=2(1−2​)
=22(1−2​)​
Divide the numbers: 22​=1=1−2​
The solutions to the quadratic equation are:u=1+2​,u=1−2​
The solutions areu=2,u=−21​,u=1+2​,u=1−2​
u=2,u=−21​,u=1+2​,u=1−2​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1+72u−u−1​ and compare to zero
u=0
Take the denominator(s) of 4(2u+u−1​)2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2,u=−21​,u=1+2​,u=1−2​
u=2,u=−21​,u=1+2​,u=1−2​
Substitute back u=ex,solve for x
Solve ex=2:x=ln(2)
ex=2
Apply exponent rules
ex=2
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2)
x=ln(2)
Solve ex=−21​:No Solution for x∈R
ex=−21​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
Solve ex=1+2​:x=ln(1+2​)
ex=1+2​
Apply exponent rules
ex=1+2​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1+2​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1+2​)
x=ln(1+2​)
Solve ex=1−2​:No Solution for x∈R
ex=1−2​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=ln(2),x=ln(1+2​)
x=ln(2),x=ln(1+2​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)-1+2cos(2x)-cos^2(x)=0cos^2(x)+6cos(x)+5=0sin(t)=-0.9397tan^2(x)=2sec^2(x)-3sinh(x)+4=4cosh(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 1+7sinh(x)=4cosh^2(x) ?

    The general solution for 1+7sinh(x)=4cosh^2(x) is x=ln(2),x=ln(1+sqrt(2))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024