Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh(x)+4=4cosh(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh(x)+4=4cosh(x)

Solution

x=0,x=ln(35​)
+1
Degrees
x=0∘,x=29.26815…∘
Solution steps
sinh(x)+4=4cosh(x)
Rewrite using trig identities
sinh(x)+4=4cosh(x)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​2ex−e−x​+4=4cosh(x)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2ex−e−x​+4=4⋅2ex+e−x​
2ex−e−x​+4=4⋅2ex+e−x​
2ex−e−x​+4=4⋅2ex+e−x​:x=0,x=ln(35​)
2ex−e−x​+4=4⋅2ex+e−x​
Multiply both sides by 22ex−e−x​⋅2+4⋅2=4⋅2ex+e−x​⋅2
Simplifyex−e−x+8=4(ex+e−x)
Apply exponent rules
ex−e−x+8=4(ex+e−x)
Apply exponent rule: abc=(ab)ce−x=(ex)−1ex−(ex)−1+8=4(ex+(ex)−1)
ex−(ex)−1+8=4(ex+(ex)−1)
Rewrite the equation with ex=uu−(u)−1+8=4(u+(u)−1)
Solve u−u−1+8=4(u+u−1):u=1,u=35​
u−u−1+8=4(u+u−1)
Refineu−u1​+8=4(u+u1​)
Multiply both sides by u
u−u1​+8=4(u+u1​)
Multiply both sides by uuu−u1​u+8u=4(u+u1​)u
Simplify
uu−u1​u+8u=4(u+u1​)u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
u2−1+8u=4(u+u1​)u
u2−1+8u=4(u+u1​)u
u2−1+8u=4(u+u1​)u
Expand 4(u+u1​)u:4u2+4
4(u+u1​)u
=4u(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=4u,b=u,c=u1​=4uu+4uu1​
=4uu+4⋅u1​u
Simplify 4uu+4⋅u1​u:4u2+4
4uu+4⋅u1​u
4uu=4u2
4uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=4u1+1
Add the numbers: 1+1=2=4u2
4⋅u1​u=4
4⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅4u​
Cancel the common factor: u=1⋅4
Multiply the numbers: 1⋅4=4=4
=4u2+4
=4u2+4
u2−1+8u=4u2+4
Move 1to the right side
u2−1+8u=4u2+4
Add 1 to both sidesu2−1+8u+1=4u2+4+1
Simplifyu2+8u=4u2+5
u2+8u=4u2+5
Solve u2+8u=4u2+5:u=1,u=35​
u2+8u=4u2+5
Move 5to the left side
u2+8u=4u2+5
Subtract 5 from both sidesu2+8u−5=4u2+5−5
Simplifyu2+8u−5=4u2
u2+8u−5=4u2
Move 4u2to the left side
u2+8u−5=4u2
Subtract 4u2 from both sidesu2+8u−5−4u2=4u2−4u2
Simplify−3u2+8u−5=0
−3u2+8u−5=0
Solve with the quadratic formula
−3u2+8u−5=0
Quadratic Equation Formula:
For a=−3,b=8,c=−5u1,2​=2(−3)−8±82−4(−3)(−5)​​
u1,2​=2(−3)−8±82−4(−3)(−5)​​
82−4(−3)(−5)​=2
82−4(−3)(−5)​
Apply rule −(−a)=a=82−4⋅3⋅5​
Multiply the numbers: 4⋅3⋅5=60=82−60​
82=64=64−60​
Subtract the numbers: 64−60=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u1,2​=2(−3)−8±2​
Separate the solutionsu1​=2(−3)−8+2​,u2​=2(−3)−8−2​
u=2(−3)−8+2​:1
2(−3)−8+2​
Remove parentheses: (−a)=−a=−2⋅3−8+2​
Add/Subtract the numbers: −8+2=−6=−2⋅3−6​
Multiply the numbers: 2⋅3=6=−6−6​
Apply the fraction rule: −b−a​=ba​=66​
Apply rule aa​=1=1
u=2(−3)−8−2​:35​
2(−3)−8−2​
Remove parentheses: (−a)=−a=−2⋅3−8−2​
Subtract the numbers: −8−2=−10=−2⋅3−10​
Multiply the numbers: 2⋅3=6=−6−10​
Apply the fraction rule: −b−a​=ba​=610​
Cancel the common factor: 2=35​
The solutions to the quadratic equation are:u=1,u=35​
u=1,u=35​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u−1+8 and compare to zero
u=0
Take the denominator(s) of 4(u+u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=35​
u=1,u=35​
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=35​:x=ln(35​)
ex=35​
Apply exponent rules
ex=35​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(35​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(35​)
x=ln(35​)
x=0,x=ln(35​)
x=0,x=ln(35​)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(18x)=-1solvefor x,y+sin(xy)=1(sec^2(+1))(sec^2(-1))=tan(x)2cos^2(x)-8cos(x)=2sin^2(x)-52cos^2(a)tan(a)=tan(a)

Frequently Asked Questions (FAQ)

  • What is the general solution for sinh(x)+4=4cosh(x) ?

    The general solution for sinh(x)+4=4cosh(x) is x=0,x=ln(5/3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024