Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)+cos(3x)= 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+cos(3x)=21​

Solution

x=32π​+2πn,x=34π​+2πn,x=0.62831…+2πn,x=2π−0.62831…+2πn,x=1.88495…+2πn,x=−1.88495…+2πn
+1
Degrees
x=120∘+360∘n,x=240∘+360∘n,x=36∘+360∘n,x=324∘+360∘n,x=108∘+360∘n,x=−108∘+360∘n
Solution steps
cos(x)+cos(3x)=21​
Subtract 21​ from both sidescos(x)+cos(3x)−21​=0
Simplify cos(x)+cos(3x)−21​:22cos(x)+2cos(3x)−1​
cos(x)+cos(3x)−21​
Convert element to fraction: cos(x)=2cos(x)2​,cos(3x)=2cos(3x)2​=2cos(x)⋅2​+2cos(3x)⋅2​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2cos(x)⋅2+cos(3x)⋅2−1​
22cos(x)+2cos(3x)−1​=0
g(x)f(x)​=0⇒f(x)=02cos(x)+2cos(3x)−1=0
Rewrite using trig identities
−1+2cos(3x)+2cos(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−1+2(4cos3(x)−3cos(x))+2cos(x)
Simplify −1+2(4cos3(x)−3cos(x))+2cos(x):−1+8cos3(x)−4cos(x)
−1+2(4cos3(x)−3cos(x))+2cos(x)
Expand 2(4cos3(x)−3cos(x)):8cos3(x)−6cos(x)
2(4cos3(x)−3cos(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=4cos3(x),c=3cos(x)=2⋅4cos3(x)−2⋅3cos(x)
Simplify 2⋅4cos3(x)−2⋅3cos(x):8cos3(x)−6cos(x)
2⋅4cos3(x)−2⋅3cos(x)
Multiply the numbers: 2⋅4=8=8cos3(x)−2⋅3cos(x)
Multiply the numbers: 2⋅3=6=8cos3(x)−6cos(x)
=8cos3(x)−6cos(x)
=−1+8cos3(x)−6cos(x)+2cos(x)
Add similar elements: −6cos(x)+2cos(x)=−4cos(x)=−1+8cos3(x)−4cos(x)
=−1+8cos3(x)−4cos(x)
−1−4cos(x)+8cos3(x)=0
Solve by substitution
−1−4cos(x)+8cos3(x)=0
Let: cos(x)=u−1−4u+8u3=0
−1−4u+8u3=0:u=−21​,u=41+5​​,u=41−5​​
−1−4u+8u3=0
Write in the standard form an​xn+…+a1​x+a0​=08u3−4u−1=0
Factor 8u3−4u−1:(2u+1)(4u2−2u−1)
8u3−4u−1
Use the rational root theorem
a0​=1,an​=8
The dividers of a0​:1,The dividers of an​:1,2,4,8
Therefore, check the following rational numbers:±1,2,4,81​
−21​ is a root of the expression, so factor out 2u+1
=(2u+1)2u+18u3−4u−1​
2u+18u3−4u−1​=4u2−2u−1
2u+18u3−4u−1​
Divide 2u+18u3−4u−1​:2u+18u3−4u−1​=4u2+2u+1−4u2−4u−1​
Divide the leading coefficients of the numerator 8u3−4u−1
and the divisor 2u+1:2u8u3​=4u2
Quotient=4u2
Multiply 2u+1 by 4u2:8u3+4u2Subtract 8u3+4u2 from 8u3−4u−1 to get new remainderRemainder=−4u2−4u−1
Therefore2u+18u3−4u−1​=4u2+2u+1−4u2−4u−1​
=4u2+2u+1−4u2−4u−1​
Divide 2u+1−4u2−4u−1​:2u+1−4u2−4u−1​=−2u+2u+1−2u−1​
Divide the leading coefficients of the numerator −4u2−4u−1
and the divisor 2u+1:2u−4u2​=−2u
Quotient=−2u
Multiply 2u+1 by −2u:−4u2−2uSubtract −4u2−2u from −4u2−4u−1 to get new remainderRemainder=−2u−1
Therefore2u+1−4u2−4u−1​=−2u+2u+1−2u−1​
=4u2−2u+2u+1−2u−1​
Divide 2u+1−2u−1​:2u+1−2u−1​=−1
Divide the leading coefficients of the numerator −2u−1
and the divisor 2u+1:2u−2u​=−1
Quotient=−1
Multiply 2u+1 by −1:−2u−1Subtract −2u−1 from −2u−1 to get new remainderRemainder=0
Therefore2u+1−2u−1​=−1
=4u2−2u−1
=(2u+1)(4u2−2u−1)
(2u+1)(4u2−2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=02u+1=0or4u2−2u−1=0
Solve 2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
Solve 4u2−2u−1=0:u=41+5​​,u=41−5​​
4u2−2u−1=0
Solve with the quadratic formula
4u2−2u−1=0
Quadratic Equation Formula:
For a=4,b=−2,c=−1u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
(−2)2−4⋅4(−1)​=25​
(−2)2−4⋅4(−1)​
Apply rule −(−a)=a=(−2)2+4⋅4⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22+16​
22=4=4+16​
Add the numbers: 4+16=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
u1,2​=2⋅4−(−2)±25​​
Separate the solutionsu1​=2⋅4−(−2)+25​​,u2​=2⋅4−(−2)−25​​
u=2⋅4−(−2)+25​​:41+5​​
2⋅4−(−2)+25​​
Apply rule −(−a)=a=2⋅42+25​​
Multiply the numbers: 2⋅4=8=82+25​​
Factor 2+25​:2(1+5​)
2+25​
Rewrite as=2⋅1+25​
Factor out common term 2=2(1+5​)
=82(1+5​)​
Cancel the common factor: 2=41+5​​
u=2⋅4−(−2)−25​​:41−5​​
2⋅4−(−2)−25​​
Apply rule −(−a)=a=2⋅42−25​​
Multiply the numbers: 2⋅4=8=82−25​​
Factor 2−25​:2(1−5​)
2−25​
Rewrite as=2⋅1−25​
Factor out common term 2=2(1−5​)
=82(1−5​)​
Cancel the common factor: 2=41−5​​
The solutions to the quadratic equation are:u=41+5​​,u=41−5​​
The solutions areu=−21​,u=41+5​​,u=41−5​​
Substitute back u=cos(x)cos(x)=−21​,cos(x)=41+5​​,cos(x)=41−5​​
cos(x)=−21​,cos(x)=41+5​​,cos(x)=41−5​​
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
cos(x)=41+5​​:x=arccos(41+5​​)+2πn,x=2π−arccos(41+5​​)+2πn
cos(x)=41+5​​
Apply trig inverse properties
cos(x)=41+5​​
General solutions for cos(x)=41+5​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(41+5​​)+2πn,x=2π−arccos(41+5​​)+2πn
x=arccos(41+5​​)+2πn,x=2π−arccos(41+5​​)+2πn
cos(x)=41−5​​:x=arccos(41−5​​)+2πn,x=−arccos(41−5​​)+2πn
cos(x)=41−5​​
Apply trig inverse properties
cos(x)=41−5​​
General solutions for cos(x)=41−5​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(41−5​​)+2πn,x=−arccos(41−5​​)+2πn
x=arccos(41−5​​)+2πn,x=−arccos(41−5​​)+2πn
Combine all the solutionsx=32π​+2πn,x=34π​+2πn,x=arccos(41+5​​)+2πn,x=2π−arccos(41+5​​)+2πn,x=arccos(41−5​​)+2πn,x=−arccos(41−5​​)+2πn
Show solutions in decimal formx=32π​+2πn,x=34π​+2πn,x=0.62831…+2πn,x=2π−0.62831…+2πn,x=1.88495…+2πn,x=−1.88495…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5cos(2x+3)=sin(2x+3)4*cos(x)+3*sec(x)=83/5 =sin(x)(sin^2(x))/(1-cos^2(x))=cot(x)cos^2(x)+cos^3(x)+cos^4(x)+cos^5(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024