Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)+1/6+(tan(1))/3 =0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)+61​+3tan(1)​=0

Solution

NoSolutionforx∈R
Solution steps
tan2(x)+61​+3tan(1)​=0
Solve by substitution
tan2(x)+61​+3tan(1)​=0
Let: tan(x)=uu2+61​+3tan(1)​=0
u2+61​+3tan(1)​=0:u=i61+2tan(1)​​,u=−i61+2tan(1)​​
u2+61​+3tan(1)​=0
Move 61​to the right side
u2+61​+3tan(1)​=0
Subtract 61​ from both sidesu2+61​+3tan(1)​−61​=0−61​
Simplifyu2+3tan(1)​=−61​
u2+3tan(1)​=−61​
Move 3tan(1)​to the right side
u2+3tan(1)​=−61​
Subtract 3tan(1)​ from both sidesu2+3tan(1)​−3tan(1)​=−61​−3tan(1)​
Simplifyu2=−61​−3tan(1)​
u2=−61​−3tan(1)​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−61​−3tan(1)​​,u=−−61​−3tan(1)​​
Simplify −61​−3tan(1)​​:i61+2tan(1)​​
−61​−3tan(1)​​
Apply imaginary number rule: −a​=ia​=i61​+3tan(1)​​
Rewrite i61​+3tan(1)​​ in standard complex form: 61+2tan(1)​​i
i61​+3tan(1)​​
61​+3tan(1)​​=61+2tan(1)​​
61​+3tan(1)​​
Join 61​+3tan(1)​:61+2tan(1)​
61​+3tan(1)​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3tan(1)​:multiply the denominator and numerator by 23tan(1)​=3⋅2tan(1)⋅2​=6tan(1)⋅2​
=61​+6tan(1)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=61+tan(1)⋅2​
=61+tan(1)⋅2​​
=61+2tan(1)​​i
=61+2tan(1)​​i
Simplify −−61​−3tan(1)​​:−i61+2tan(1)​​
−−61​−3tan(1)​​
Apply imaginary number rule: −a​=ia​=−i61​+3tan(1)​​
Rewrite −i61​+3tan(1)​​ in standard complex form: −61+2tan(1)​​i
−i61​+3tan(1)​​
−61​+3tan(1)​​=−61+2tan(1)​​
−61​+3tan(1)​​
Join 61​+3tan(1)​:61+2tan(1)​
61​+3tan(1)​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3tan(1)​:multiply the denominator and numerator by 23tan(1)​=3⋅2tan(1)⋅2​=6tan(1)⋅2​
=61​+6tan(1)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=61+tan(1)⋅2​
=−62tan(1)+1​​
=−61+2tan(1)​​i
=−61+2tan(1)​​i
u=i61+2tan(1)​​,u=−i61+2tan(1)​​
Substitute back u=tan(x)tan(x)=i61+2tan(1)​​,tan(x)=−i61+2tan(1)​​
tan(x)=i61+2tan(1)​​,tan(x)=−i61+2tan(1)​​
tan(x)=i61+2tan(1)​​:No Solution
tan(x)=i61+2tan(1)​​
NoSolution
tan(x)=−i61+2tan(1)​​:No Solution
tan(x)=−i61+2tan(1)​​
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2cos^2(x)-5sin(x)+5=03-4sin^3(x)=sin^3(x)cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x)sin(2x)=5cos(x)sin(a)=0.4848

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(x)+1/6+(tan(1))/3 =0 ?

    The general solution for tan^2(x)+1/6+(tan(1))/3 =0 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024