Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos4(x)=83​+21​cos2(x)+81​cos4(x)

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
cos4(x)=83​+21​cos2(x)+81​cos4(x)
Solve by substitution
cos4(x)=83​+21​cos2(x)+81​cos4(x)
Let: cos(x)=uu4=83​+21​u2+81​u4
u4=83​+21​u2+81​u4:u=i73​​,u=−i73​​,u=1,u=−1
u4=83​+21​u2+81​u4
Find Least Common Multiplier of 8,2:8
8,2
Least Common Multiplier (LCM)
Prime factorization of 8:2⋅2⋅2
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 8 or 2=2⋅2⋅2
Multiply the numbers: 2⋅2⋅2=8=8
Multiply by LCM=8u4⋅8=83​⋅8+21​u2⋅8+81​u4⋅8
Simplify8u4=3+4u2+u4
Switch sides3+4u2+u4=8u4
Move 8u4to the left side
3+4u2+u4=8u4
Subtract 8u4 from both sides3+4u2+u4−8u4=8u4−8u4
Simplify3+4u2−7u4=0
3+4u2−7u4=0
Write in the standard form an​xn+…+a1​x+a0​=0−7u4+4u2+3=0
Rewrite the equation with v=u2 and v2=u4−7v2+4v+3=0
Solve −7v2+4v+3=0:v=−73​,v=1
−7v2+4v+3=0
Solve with the quadratic formula
−7v2+4v+3=0
Quadratic Equation Formula:
For a=−7,b=4,c=3v1,2​=2(−7)−4±42−4(−7)⋅3​​
v1,2​=2(−7)−4±42−4(−7)⋅3​​
42−4(−7)⋅3​=10
42−4(−7)⋅3​
Apply rule −(−a)=a=42+4⋅7⋅3​
Multiply the numbers: 4⋅7⋅3=84=42+84​
42=16=16+84​
Add the numbers: 16+84=100=100​
Factor the number: 100=102=102​
Apply radical rule: 102​=10=10
v1,2​=2(−7)−4±10​
Separate the solutionsv1​=2(−7)−4+10​,v2​=2(−7)−4−10​
v=2(−7)−4+10​:−73​
2(−7)−4+10​
Remove parentheses: (−a)=−a=−2⋅7−4+10​
Add/Subtract the numbers: −4+10=6=−2⋅76​
Multiply the numbers: 2⋅7=14=−146​
Apply the fraction rule: −ba​=−ba​=−146​
Cancel the common factor: 2=−73​
v=2(−7)−4−10​:1
2(−7)−4−10​
Remove parentheses: (−a)=−a=−2⋅7−4−10​
Subtract the numbers: −4−10=−14=−2⋅7−14​
Multiply the numbers: 2⋅7=14=−14−14​
Apply the fraction rule: −b−a​=ba​=1414​
Apply rule aa​=1=1
The solutions to the quadratic equation are:v=−73​,v=1
v=−73​,v=1
Substitute back v=u2,solve for u
Solve u2=−73​:u=i73​​,u=−i73​​
u2=−73​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−73​​,u=−−73​​
Simplify −73​​:i73​​
−73​​
Apply radical rule: −a​=−1​a​−73​​=−1​73​​=−1​73​​
Apply imaginary number rule: −1​=i=i73​​
Simplify −−73​​:−i73​​
−−73​​
Simplify −73​​:i73​​
−73​​
Apply radical rule: −a​=−1​a​−73​​=−1​73​​=−1​73​​
Apply imaginary number rule: −1​=i=i73​​
=−i73​​
u=i73​​,u=−i73​​
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
The solutions are
u=i73​​,u=−i73​​,u=1,u=−1
Substitute back u=cos(x)cos(x)=i73​​,cos(x)=−i73​​,cos(x)=1,cos(x)=−1
cos(x)=i73​​,cos(x)=−i73​​,cos(x)=1,cos(x)=−1
cos(x)=i73​​:No Solution
cos(x)=i73​​
NoSolution
cos(x)=−i73​​:No Solution
cos(x)=−i73​​
NoSolution
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x)=5cos(x)sin(a)=0.4848sin^2(x)=2cos^4(x)sin^3(x)+cos^3(x)=(1-1)/(2sin^2(x))solvefor i,xsin^2(x)=cos^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x) ?

    The general solution for cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024