Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/((sec^2(a)))+1/((cos^2(a)))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sec2(a))1​+(cos2(a))1​=1

Solution

NoSolutionfora∈R
Solution steps
(sec2(a))1​+(cos2(a))1​=1
Subtract 1 from both sidessec2(a)1​+cos2(a)1​−1=0
Simplify sec2(a)1​+cos2(a)1​−1:sec2(a)cos2(a)cos2(a)+sec2(a)−sec2(a)cos2(a)​
sec2(a)1​+cos2(a)1​−1
Convert element to fraction: 1=11​=sec2(a)1​+cos2(a)1​−11​
Least Common Multiplier of sec2(a),cos2(a),1:sec2(a)cos2(a)
sec2(a),cos2(a),1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sec2(a)cos2(a)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sec2(a)cos2(a)
For sec2(a)1​:multiply the denominator and numerator by cos2(a)sec2(a)1​=sec2(a)cos2(a)1⋅cos2(a)​=sec2(a)cos2(a)cos2(a)​
For cos2(a)1​:multiply the denominator and numerator by sec2(a)cos2(a)1​=cos2(a)sec2(a)1⋅sec2(a)​=sec2(a)cos2(a)sec2(a)​
For 11​:multiply the denominator and numerator by sec2(a)cos2(a)11​=1⋅sec2(a)cos2(a)1⋅sec2(a)cos2(a)​=sec2(a)cos2(a)sec2(a)cos2(a)​
=sec2(a)cos2(a)cos2(a)​+sec2(a)cos2(a)sec2(a)​−sec2(a)cos2(a)sec2(a)cos2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec2(a)cos2(a)cos2(a)+sec2(a)−sec2(a)cos2(a)​
sec2(a)cos2(a)cos2(a)+sec2(a)−sec2(a)cos2(a)​=0
g(x)f(x)​=0⇒f(x)=0cos2(a)+sec2(a)−sec2(a)cos2(a)=0
Rewrite using trig identities
cos2(a)+sec2(a)−cos2(a)sec2(a)
Use the basic trigonometric identity: cos(x)=sec(x)1​=(sec(a)1​)2+sec2(a)−(sec(a)1​)2sec2(a)
Simplify (sec(a)1​)2+sec2(a)−(sec(a)1​)2sec2(a):sec2(a)1​+sec2(a)−1
(sec(a)1​)2+sec2(a)−(sec(a)1​)2sec2(a)
(sec(a)1​)2=sec2(a)1​
(sec(a)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(a)12​
Apply rule 1a=112=1=sec2(a)1​
(sec(a)1​)2sec2(a)=1
(sec(a)1​)2sec2(a)
(sec(a)1​)2=sec2(a)1​
(sec(a)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(a)12​
Apply rule 1a=112=1=sec2(a)1​
=sec2(a)1​sec2(a)
Multiply fractions: a⋅cb​=ca⋅b​=sec2(a)1⋅sec2(a)​
Cancel the common factor: sec2(a)=1
=sec2(a)1​+sec2(a)−1
=sec2(a)1​+sec2(a)−1
−1+sec2(a)1​+sec2(a)=0
Solve by substitution
−1+sec2(a)1​+sec2(a)=0
Let: sec(a)=u−1+u21​+u2=0
−1+u21​+u2=0:u=23​​+21​i,u=−23​​−21​i,u=−23​​+21​i,u=23​​−21​i
−1+u21​+u2=0
Multiply both sides by u2
−1+u21​+u2=0
Multiply both sides by u2−1⋅u2+u21​u2+u2u2=0⋅u2
Simplify
−1⋅u2+u21​u2+u2u2=0⋅u2
Simplify −1⋅u2:−u2
−1⋅u2
Multiply: 1⋅u2=u2=−u2
Simplify u21​u2:1
u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u2​
Cancel the common factor: u2=1
Simplify u2u2:u4
u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−u2+1+u4=0
−u2+1+u4=0
−u2+1+u4=0
Solve −u2+1+u4=0:u=23​​+21​i,u=−23​​−21​i,u=−23​​+21​i,u=23​​−21​i
−u2+1+u4=0
Write in the standard form an​xn+…+a1​x+a=0u4−u2+1=0
Rewrite the equation with x=u2 and x2=u4x2−x+1=0
Solve x2−x+1=0:x=21​+i23​​,x=21​−i23​​
x2−x+1=0
Solve with the quadratic formula
x2−x+1=0
Quadratic Equation Formula:
For a=1,b=−1,c=1x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅1​​
x1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅1​​
Simplify (−1)2−4⋅1⋅1​:3​i
(−1)2−4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1−4​
Subtract the numbers: 1−4=−3=−3​
Apply radical rule: −a​=−1​a​−3​=−1​3​=−1​3​
Apply imaginary number rule: −1​=i=3​i
x1,2​=2⋅1−(−1)±3​i​
Separate the solutionsx1​=2⋅1−(−1)+3​i​,x2​=2⋅1−(−1)−3​i​
x=2⋅1−(−1)+3​i​:21​+i23​​
2⋅1−(−1)+3​i​
Apply rule −(−a)=a=2⋅11+3​i​
Multiply the numbers: 2⋅1=2=21+3​i​
Rewrite 21+3​i​ in standard complex form: 21​+23​​i
21+3​i​
Apply the fraction rule: ca±b​=ca​±cb​21+3​i​=21​+23​i​=21​+23​i​
=21​+23​​i
x=2⋅1−(−1)−3​i​:21​−i23​​
2⋅1−(−1)−3​i​
Apply rule −(−a)=a=2⋅11−3​i​
Multiply the numbers: 2⋅1=2=21−3​i​
Rewrite 21−3​i​ in standard complex form: 21​−23​​i
21−3​i​
Apply the fraction rule: ca±b​=ca​±cb​21−3​i​=21​−23​i​=21​−23​i​
=21​−23​​i
The solutions to the quadratic equation are:x=21​+i23​​,x=21​−i23​​
x=21​+i23​​,x=21​−i23​​
Substitute back x=u2,solve for u
Solve u2=21​+i23​​:u=23​​+21​i,u=−23​​−21​i
u2=21​+i23​​
Substitute u=x+yi(x+yi)2=21​+i23​​
Expand (x+yi)2:(x2−y2)+2ixy
(x+yi)2
=(x+iy)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=x,b=yi
=x2+2xyi+(yi)2
(yi)2=−y2
(yi)2
Apply exponent rule: (a⋅b)n=anbn=i2y2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)y2
Refine=−y2
=x2+2ixy−y2
Rewrite x2+2ixy−y2 in standard complex form: (x2−y2)+2xyi
x2+2ixy−y2
Group the real part and the imaginary part of the complex number=(x2−y2)+2xyi
=(x2−y2)+2xyi
(x2−y2)+2ixy=21​+i23​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[x2−y2=21​2xy=23​​​]
[x2−y2=21​2xy=23​​​]:(x=23​​,x=−23​​,​y=21​y=−21​​)
[x2−y2=21​2xy=23​​​]
Isolate xfor 2xy=23​​:x=4y3​​
2xy=23​​
Divide both sides by 2y
2xy=23​​
Divide both sides by 2y2y2xy​=2y23​​​
Simplify
2y2xy​=2y23​​​
Simplify 2y2xy​:x
2y2xy​
Divide the numbers: 22​=1=yxy​
Cancel the common factor: y=x
Simplify 2y23​​​:4y3​​
2y23​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2y3​​
Multiply the numbers: 2⋅2=4=4y3​​
x=4y3​​
x=4y3​​
x=4y3​​
Plug the solutions x=4y3​​ into x2−y2=21​
For x2−y2=21​, subsitute x with 4y3​​:y=21​,y=−21​
For x2−y2=21​, subsitute x with 4y3​​(4y3​​)2−y2=21​
Solve (4y3​​)2−y2=21​:y=21​,y=−21​
(4y3​​)2−y2=21​
Multiply by LCM
(4y3​​)2−y2=21​
Simplify (4y3​​)2:16y23​
(4y3​​)2
Apply exponent rule: (ba​)c=bcac​=(4y)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(4y)2=42y2=42y2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42y23​
42=16=16y23​
16y23​−y2=21​
Find Least Common Multiplier of 16y2,2:16y2
16y2,2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 16,2:16
16,2
Least Common Multiplier (LCM)
Prime factorization of 16:2⋅2⋅2⋅2
16
16divides by 216=8⋅2=2⋅8
8divides by 28=4⋅2=2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 16 or 2=2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2=16=16
Compute an expression comprised of factors that appear either in 16y2 or 2=16y2
Multiply by LCM=16y216y23​⋅16y2−y2⋅16y2=21​⋅16y2
Simplify
16y23​⋅16y2−y2⋅16y2=21​⋅16y2
Simplify 16y23​⋅16y2:3
16y23​⋅16y2
Multiply fractions: a⋅cb​=ca⋅b​=16y23⋅16y2​
Cancel the common factor: 16=y23y2​
Cancel the common factor: y2=3
Simplify −y2⋅16y2:−16y4
−y2⋅16y2
Apply exponent rule: ab⋅ac=ab+cy2y2=y2+2=−16y2+2
Add the numbers: 2+2=4=−16y4
Simplify 21​⋅16y2:8y2
21​⋅16y2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅16​y2
21⋅16​=8
21⋅16​
Multiply the numbers: 1⋅16=16=216​
Divide the numbers: 216​=8=8
=8y2
3−16y4=8y2
3−16y4=8y2
3−16y4=8y2
Solve 3−16y4=8y2:y=21​,y=−21​
3−16y4=8y2
Move 8y2to the left side
3−16y4=8y2
Subtract 8y2 from both sides3−16y4−8y2=8y2−8y2
Simplify3−16y4−8y2=0
3−16y4−8y2=0
Write in the standard form an​xn+…+a1​x+a=0−16y4−8y2+3=0
Rewrite the equation with u=y2 and u2=y4−16u2−8u+3=0
Solve −16u2−8u+3=0:u=−43​,u=41​
−16u2−8u+3=0
Solve with the quadratic formula
−16u2−8u+3=0
Quadratic Equation Formula:
For a=−16,b=−8,c=3u1,2​=2(−16)−(−8)±(−8)2−4(−16)⋅3​​
u1,2​=2(−16)−(−8)±(−8)2−4(−16)⋅3​​
(−8)2−4(−16)⋅3​=16
(−8)2−4(−16)⋅3​
Apply rule −(−a)=a=(−8)2+4⋅16⋅3​
Apply exponent rule: (−a)n=an,if n is even(−8)2=82=82+4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=82+192​
82=64=64+192​
Add the numbers: 64+192=256=256​
Factor the number: 256=162=162​
Apply radical rule: 162​=16=16
u1,2​=2(−16)−(−8)±16​
Separate the solutionsu1​=2(−16)−(−8)+16​,u2​=2(−16)−(−8)−16​
u=2(−16)−(−8)+16​:−43​
2(−16)−(−8)+16​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅168+16​
Add the numbers: 8+16=24=−2⋅1624​
Multiply the numbers: 2⋅16=32=−3224​
Apply the fraction rule: −ba​=−ba​=−3224​
Cancel the common factor: 8=−43​
u=2(−16)−(−8)−16​:41​
2(−16)−(−8)−16​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅168−16​
Subtract the numbers: 8−16=−8=−2⋅16−8​
Multiply the numbers: 2⋅16=32=−32−8​
Apply the fraction rule: −b−a​=ba​=328​
Cancel the common factor: 8=41​
The solutions to the quadratic equation are:u=−43​,u=41​
u=−43​,u=41​
Substitute back u=y2,solve for y
Solve y2=−43​:No Solution for y∈R
y2=−43​
x2 cannot be negative for x∈RNoSolutionfory∈R
Solve y2=41​:y=21​,y=−21​
y2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
y=41​​,y=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
y=21​,y=−21​
The solutions are
y=21​,y=−21​
y=21​,y=−21​
Verify Solutions
Find undefined (singularity) points:y=0
Take the denominator(s) of (4y3​​)2−y2 and compare to zero
Solve 4y=0:y=0
4y=0
Divide both sides by 4
4y=0
Divide both sides by 444y​=40​
Simplifyy=0
y=0
The following points are undefinedy=0
Combine undefined points with solutions:
y=21​,y=−21​
Plug the solutions y=21​,y=−21​ into 2xy=23​​
For 2xy=23​​, subsitute y with 21​:x=23​​
For 2xy=23​​, subsitute y with 21​2x21​=23​​
Solve 2x21​=23​​:x=23​​
2x21​=23​​
Multiply fractions: a⋅cb​=ca⋅b​21⋅2​x=23​​
Cancel the common factor: 2x⋅1=23​​
Multiply: x⋅1=xx=23​​
For 2xy=23​​, subsitute y with −21​:x=−23​​
For 2xy=23​​, subsitute y with −21​2x(−21​)=23​​
Solve 2x(−21​)=23​​:x=−23​​
2x(−21​)=23​​
Divide both sides by 2(−21​)
2x(−21​)=23​​
Divide both sides by 2(−21​)2(−21​)2x(−21​)​=2(−21​)23​​​
Simplify
2(−21​)2x(−21​)​=2(−21​)23​​​
Simplify 2(−21​)2x(−21​)​:x
2(−21​)2x(−21​)​
Remove parentheses: (−a)=−a=−2⋅21​−2x21​​
Apply the fraction rule: −b−a​=ba​=2⋅21​2x21​​
Multiply 2x21​:x
2x21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2x​
Cancel the common factor: 2=1⋅x
Multiply: 1⋅x=x=x
=2⋅21​x​
Multiply 2⋅21​:1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1x​
Apply rule 1a​=a=x
Simplify 2(−21​)23​​​:−23​​
2(−21​)23​​​
Remove parentheses: (−a)=−a=−2⋅21​23​​​
Apply the fraction rule: −ba​=−ba​=−2⋅21​23​​​
Apply the fraction rule: acb​​=c⋅ab​2⋅21​23​​​=2⋅2⋅21​3​​=−2⋅2⋅21​3​​
Multiply the numbers: 2⋅2=4=−4⋅21​3​​
Multiply 4⋅21​:2
4⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=−23​​
x=−23​​
x=−23​​
x=−23​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into x2−y2=21​
Remove the ones that don't agree with the equation.
Check the solution x=−23​​,y=−21​:True
x2−y2=21​
Plug in x=−23​​,y=−21​(−23​​)2−(−21​)2=21​
Refine21​=21​
True
Check the solution x=23​​,y=21​:True
x2−y2=21​
Plug in x=23​​,y=21​(23​​)2−(21​)2=21​
Refine21​=21​
True
Check the solutions by plugging them into 2xy=23​​
Remove the ones that don't agree with the equation.
Check the solution x=−23​​,y=−21​:True
2xy=23​​
Plug in x=−23​​,y=−21​2(−23​​)(−21​)=23​​
Refine23​​=23​​
True
Check the solution x=23​​,y=21​:True
2xy=23​​
Plug in x=23​​,y=21​2⋅23​​⋅21​=23​​
Refine23​​=23​​
True
Therefore, the final solutions for x2−y2=21​,2xy=23​​ are (x=23​​,x=−23​​,​y=21​y=−21​​)
Substitute back u=x+yiu=23​​+21​i,u=−23​​−21​i
Solve u2=21​−i23​​:u=−23​​+21​i,u=23​​−21​i
u2=21​−i23​​
Substitute u=x+yi(x+yi)2=21​−i23​​
Expand (x+yi)2:(x2−y2)+2ixy
(x+yi)2
=(x+iy)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=x,b=yi
=x2+2xyi+(yi)2
(yi)2=−y2
(yi)2
Apply exponent rule: (a⋅b)n=anbn=i2y2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)y2
Refine=−y2
=x2+2ixy−y2
Rewrite x2+2ixy−y2 in standard complex form: (x2−y2)+2xyi
x2+2ixy−y2
Group the real part and the imaginary part of the complex number=(x2−y2)+2xyi
=(x2−y2)+2xyi
(x2−y2)+2ixy=21​−i23​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[x2−y2=21​2xy=−23​​​]
[x2−y2=21​2xy=−23​​​]:(x=−23​​,x=23​​,​y=21​y=−21​​)
[x2−y2=21​2xy=−23​​​]
Isolate xfor 2xy=−23​​:x=−4y3​​
2xy=−23​​
Divide both sides by 2y
2xy=−23​​
Divide both sides by 2y2y2xy​=2y−23​​​
Simplify
2y2xy​=2y−23​​​
Simplify 2y2xy​:x
2y2xy​
Divide the numbers: 22​=1=yxy​
Cancel the common factor: y=x
Simplify 2y−23​​​:−4y3​​
2y−23​​​
Apply the fraction rule: b−a​=−ba​=−2y23​​​
Apply the fraction rule: acb​​=c⋅ab​2y23​​​=2⋅2y3​​=−2⋅2y3​​
Multiply the numbers: 2⋅2=4=−4y3​​
x=−4y3​​
x=−4y3​​
x=−4y3​​
Plug the solutions x=−4y3​​ into x2−y2=21​
For x2−y2=21​, subsitute x with −4y3​​:y=21​,y=−21​
For x2−y2=21​, subsitute x with −4y3​​(−4y3​​)2−y2=21​
Solve (−4y3​​)2−y2=21​:y=21​,y=−21​
(−4y3​​)2−y2=21​
Multiply by LCM
(−4y3​​)2−y2=21​
Simplify (−4y3​​)2:16y23​
(−4y3​​)2
Apply exponent rule: (−a)n=an,if n is even(−4y3​​)2=(4y3​​)2=(4y3​​)2
Apply exponent rule: (ba​)c=bcac​=(4y)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(4y)2=42y2=42y2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42y23​
42=16=16y23​
16y23​−y2=21​
Find Least Common Multiplier of 16y2,2:16y2
16y2,2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 16,2:16
16,2
Least Common Multiplier (LCM)
Prime factorization of 16:2⋅2⋅2⋅2
16
16divides by 216=8⋅2=2⋅8
8divides by 28=4⋅2=2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 16 or 2=2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2=16=16
Compute an expression comprised of factors that appear either in 16y2 or 2=16y2
Multiply by LCM=16y216y23​⋅16y2−y2⋅16y2=21​⋅16y2
Simplify
16y23​⋅16y2−y2⋅16y2=21​⋅16y2
Simplify 16y23​⋅16y2:3
16y23​⋅16y2
Multiply fractions: a⋅cb​=ca⋅b​=16y23⋅16y2​
Cancel the common factor: 16=y23y2​
Cancel the common factor: y2=3
Simplify −y2⋅16y2:−16y4
−y2⋅16y2
Apply exponent rule: ab⋅ac=ab+cy2y2=y2+2=−16y2+2
Add the numbers: 2+2=4=−16y4
Simplify 21​⋅16y2:8y2
21​⋅16y2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅16​y2
21⋅16​=8
21⋅16​
Multiply the numbers: 1⋅16=16=216​
Divide the numbers: 216​=8=8
=8y2
3−16y4=8y2
3−16y4=8y2
3−16y4=8y2
Solve 3−16y4=8y2:y=21​,y=−21​
3−16y4=8y2
Move 8y2to the left side
3−16y4=8y2
Subtract 8y2 from both sides3−16y4−8y2=8y2−8y2
Simplify3−16y4−8y2=0
3−16y4−8y2=0
Write in the standard form an​xn+…+a1​x+a=0−16y4−8y2+3=0
Rewrite the equation with u=y2 and u2=y4−16u2−8u+3=0
Solve −16u2−8u+3=0:u=−43​,u=41​
−16u2−8u+3=0
Solve with the quadratic formula
−16u2−8u+3=0
Quadratic Equation Formula:
For a=−16,b=−8,c=3u1,2​=2(−16)−(−8)±(−8)2−4(−16)⋅3​​
u1,2​=2(−16)−(−8)±(−8)2−4(−16)⋅3​​
(−8)2−4(−16)⋅3​=16
(−8)2−4(−16)⋅3​
Apply rule −(−a)=a=(−8)2+4⋅16⋅3​
Apply exponent rule: (−a)n=an,if n is even(−8)2=82=82+4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=82+192​
82=64=64+192​
Add the numbers: 64+192=256=256​
Factor the number: 256=162=162​
Apply radical rule: 162​=16=16
u1,2​=2(−16)−(−8)±16​
Separate the solutionsu1​=2(−16)−(−8)+16​,u2​=2(−16)−(−8)−16​
u=2(−16)−(−8)+16​:−43​
2(−16)−(−8)+16​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅168+16​
Add the numbers: 8+16=24=−2⋅1624​
Multiply the numbers: 2⋅16=32=−3224​
Apply the fraction rule: −ba​=−ba​=−3224​
Cancel the common factor: 8=−43​
u=2(−16)−(−8)−16​:41​
2(−16)−(−8)−16​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅168−16​
Subtract the numbers: 8−16=−8=−2⋅16−8​
Multiply the numbers: 2⋅16=32=−32−8​
Apply the fraction rule: −b−a​=ba​=328​
Cancel the common factor: 8=41​
The solutions to the quadratic equation are:u=−43​,u=41​
u=−43​,u=41​
Substitute back u=y2,solve for y
Solve y2=−43​:No Solution for y∈R
y2=−43​
x2 cannot be negative for x∈RNoSolutionfory∈R
Solve y2=41​:y=21​,y=−21​
y2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
y=41​​,y=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
y=21​,y=−21​
The solutions are
y=21​,y=−21​
y=21​,y=−21​
Verify Solutions
Find undefined (singularity) points:y=0
Take the denominator(s) of (−4y3​​)2−y2 and compare to zero
Solve 4y=0:y=0
4y=0
Divide both sides by 4
4y=0
Divide both sides by 444y​=40​
Simplifyy=0
y=0
The following points are undefinedy=0
Combine undefined points with solutions:
y=21​,y=−21​
Plug the solutions y=21​,y=−21​ into 2xy=−23​​
For 2xy=−23​​, subsitute y with 21​:x=−23​​
For 2xy=−23​​, subsitute y with 21​2x21​=−23​​
Solve 2x21​=−23​​:x=−23​​
2x21​=−23​​
Multiply fractions: a⋅cb​=ca⋅b​21⋅2​x=−23​​
Cancel the common factor: 2x⋅1=−23​​
Multiply: x⋅1=xx=−23​​
For 2xy=−23​​, subsitute y with −21​:x=23​​
For 2xy=−23​​, subsitute y with −21​2x(−21​)=−23​​
Solve 2x(−21​)=−23​​:x=23​​
2x(−21​)=−23​​
Divide both sides by 2(−21​)
2x(−21​)=−23​​
Divide both sides by 2(−21​)2(−21​)2x(−21​)​=2(−21​)−23​​​
Simplify
2(−21​)2x(−21​)​=2(−21​)−23​​​
Simplify 2(−21​)2x(−21​)​:x
2(−21​)2x(−21​)​
Remove parentheses: (−a)=−a=−2⋅21​−2x21​​
Apply the fraction rule: −b−a​=ba​=2⋅21​2x21​​
Multiply 2x21​:x
2x21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2x​
Cancel the common factor: 2=1⋅x
Multiply: 1⋅x=x=x
=2⋅21​x​
Multiply 2⋅21​:1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1x​
Apply rule 1a​=a=x
Simplify 2(−21​)−23​​​:23​​
2(−21​)−23​​​
Remove parentheses: (−a)=−a=−2⋅21​−23​​​
Apply the fraction rule: −b−a​=ba​=2⋅21​23​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2⋅21​3​​
Multiply the numbers: 2⋅2=4=4⋅21​3​​
Multiply 4⋅21​:2
4⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅4​
Multiply the numbers: 1⋅4=4=24​
Divide the numbers: 24​=2=2
=23​​
x=23​​
x=23​​
x=23​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into x2−y2=21​
Remove the ones that don't agree with the equation.
Check the solution x=23​​,y=−21​:True
x2−y2=21​
Plug in x=23​​,y=−21​(23​​)2−(−21​)2=21​
Refine21​=21​
True
Check the solution x=−23​​,y=21​:True
x2−y2=21​
Plug in x=−23​​,y=21​(−23​​)2−(21​)2=21​
Refine21​=21​
True
Check the solutions by plugging them into 2xy=−23​​
Remove the ones that don't agree with the equation.
Check the solution x=23​​,y=−21​:True
2xy=−23​​
Plug in x=23​​,y=−21​2⋅23​​(−21​)=−23​​
Refine−23​​=−23​​
True
Check the solution x=−23​​,y=21​:True
2xy=−23​​
Plug in x=−23​​,y=21​2(−23​​)21​=−23​​
Refine−23​​=−23​​
True
Therefore, the final solutions for x2−y2=21​,2xy=−23​​ are (x=−23​​,x=23​​,​y=21​y=−21​​)
Substitute back u=x+yiu=−23​​+21​i,u=23​​−21​i
The solutions are
u=23​​+21​i,u=−23​​−21​i,u=−23​​+21​i,u=23​​−21​i
u=23​​+21​i,u=−23​​−21​i,u=−23​​+21​i,u=23​​−21​i
Substitute back u=sec(a)sec(a)=23​​+21​i,sec(a)=−23​​−21​i,sec(a)=−23​​+21​i,sec(a)=23​​−21​i
sec(a)=23​​+21​i,sec(a)=−23​​−21​i,sec(a)=−23​​+21​i,sec(a)=23​​−21​i
sec(a)=23​​+21​i:No Solution
sec(a)=23​​+21​i
NoSolution
sec(a)=−23​​−21​i:No Solution
sec(a)=−23​​−21​i
NoSolution
sec(a)=−23​​+21​i:No Solution
sec(a)=−23​​+21​i
NoSolution
sec(a)=23​​−21​i:No Solution
sec(a)=23​​−21​i
NoSolution
Combine all the solutionsNoSolutionfora∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(1-cos(a))(1+cos(a))=tan(a)sin(a)tan^2(x)+1/6+(tan(1))/3 =0-2cos^2(x)-5sin(x)+5=03-4sin^3(x)=sin^3(x)cos^4(x)= 3/8+1/2 cos^2(x)+1/8 cos^4(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/((sec^2(a)))+1/((cos^2(a)))=1 ?

    The general solution for 1/((sec^2(a)))+1/((cos^2(a)))=1 is No Solution for a\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024