Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

((1+cot^2(x)))/(cos^2(x))=cot^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)(1+cot2(x))​=cot2(x)

Solution

NoSolutionforx∈R
Solution steps
cos2(x)(1+cot2(x))​=cot2(x)
Subtract cot2(x) from both sidescos2(x)1+cot2(x)​−cot2(x)=0
Simplify cos2(x)1+cot2(x)​−cot2(x):cos2(x)1+cot2(x)−cot2(x)cos2(x)​
cos2(x)1+cot2(x)​−cot2(x)
Convert element to fraction: cot2(x)=cos2(x)cot2(x)cos2(x)​=cos2(x)1+cot2(x)​−cos2(x)cot2(x)cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)1+cot2(x)−cot2(x)cos2(x)​
cos2(x)1+cot2(x)−cot2(x)cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01+cot2(x)−cot2(x)cos2(x)=0
Rewrite using trig identities
1+cot2(x)−cos2(x)cot2(x)
Use the Pythagorean identity: 1+cot2(x)=csc2(x)=−cos2(x)cot2(x)+csc2(x)
csc2(x)−cos2(x)cot2(x)=0
Factor csc2(x)−cos2(x)cot2(x):(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))
csc2(x)−cos2(x)cot2(x)
Rewrite cos2(x)cot2(x) as (cos(x)cot(x))2
cos2(x)cot2(x)
Apply exponent rule: ambm=(ab)mcos2(x)cot2(x)=(cos(x)cot(x))2=(cos(x)cot(x))2
=csc2(x)−(cos(x)cot(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)csc2(x)−(cos(x)cot(x))2=(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))=(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))
(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))=0
Solving each part separatelycsc(x)+cos(x)cot(x)=0orcsc(x)−cos(x)cot(x)=0
csc(x)+cos(x)cot(x)=0:No Solution
csc(x)+cos(x)cot(x)=0
Express with sin, cos
csc(x)+cos(x)cot(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​+cos(x)cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)1​+cos(x)sin(x)cos(x)​
Simplify sin(x)1​+cos(x)sin(x)cos(x)​:sin(x)1+cos2(x)​
sin(x)1​+cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=sin(x)1​+sin(x)cos2(x)​
Apply rule ca​±cb​=ca±b​=sin(x)1+cos2(x)​
=sin(x)1+cos2(x)​
sin(x)1+cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01+cos2(x)=0
Solve by substitution
1+cos2(x)=0
Let: cos(x)=u1+u2=0
1+u2=0:u=i,u=−i
1+u2=0
Move 1to the right side
1+u2=0
Subtract 1 from both sides1+u2−1=0−1
Simplifyu2=−1
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
Substitute back u=cos(x)cos(x)=i,cos(x)=−i
cos(x)=i,cos(x)=−i
cos(x)=i:No Solution
cos(x)=i
NoSolution
cos(x)=−i:No Solution
cos(x)=−i
NoSolution
Combine all the solutionsNoSolution
csc(x)−cos(x)cot(x)=0:No Solution
csc(x)−cos(x)cot(x)=0
Express with sin, cos
csc(x)−cos(x)cot(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​−cos(x)cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)1​−cos(x)sin(x)cos(x)​
Simplify sin(x)1​−cos(x)sin(x)cos(x)​:sin(x)1−cos2(x)​
sin(x)1​−cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=sin(x)1​−sin(x)cos2(x)​
Apply rule ca​±cb​=ca±b​=sin(x)1−cos2(x)​
=sin(x)1−cos2(x)​
sin(x)1−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01−cos2(x)=0
Solve by substitution
1−cos2(x)=0
Let: cos(x)=u1−u2=0
1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Substitute back u=cos(x)cos(x)=1,cos(x)=−1
cos(x)=1,cos(x)=−1
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=2πn,x=π+2πn
Since the equation is undefined for:2πn,π+2πnNoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2p+1)=-1solvefor y,a*z=5sin(2y)sin^3(x)=sin^2(x)2sec^2(a)+tan^2(a)=33cos^2(x)+4cos(x)+1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for ((1+cot^2(x)))/(cos^2(x))=cot^2(x) ?

    The general solution for ((1+cot^2(x)))/(cos^2(x))=cot^2(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024