Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

sin^{22}(x)=sin^2(x)

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

sin22(x)=sin2(x)

Solution

x=2πn,x=π+2πn,x=2π​+2πn,x=23π​+2πn
+1
Degrés
x=0∘+360∘n,x=180∘+360∘n,x=90∘+360∘n,x=270∘+360∘n
étapes des solutions
sin22(x)=sin2(x)
Résoudre par substitution
sin22(x)=sin2(x)
Soit : sin(x)=uu22=u2
u22=u2:u=0,u=1,u=−1
u22=u2
Déplacer u2vers la gauche
u22=u2
Soustraire u2 des deux côtésu22−u2=u2−u2
Simplifieru22−u2=0
u22−u2=0
Récrire l'équation avec v=u2 et v11=u22v11−v=0
Résoudre v11−v=0:v=0,v=−1,v=1
v11−v=0
Factoriser v11−v:v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v11−v
Factoriser le terme commun v:v(v10−1)
v11−v
Appliquer la règle de l'exposant: ab+c=abacv11=v10v=v10v−v
Factoriser le terme commun v=v(v10−1)
=v(v10−1)
Factoriser v10−1:(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v10−1
Récrire v10−1 comme (v5)2−12
v10−1
Récrire 1 comme 12=v10−12
Appliquer la règle de l'exposant: abc=(ab)cv10=(v5)2=(v5)2−12
=(v5)2−12
Appliquer la formule de différence de deux carrés : x2−y2=(x+y)(x−y)(v5)2−12=(v5+1)(v5−1)=(v5+1)(v5−1)
Factoriser v5+1:(v+1)(v4−v3+v2−v+1)
v5+1
Récrire 1 comme 15=v5+15
Appliquer la règle de factorisation : xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddv5+15=(v+1)(v4−v3+v2−v+1)=(v+1)(v4−v3+v2−v+1)
=(v+1)(v4−v3+v2−v+1)(v5−1)
Factoriser v5−1:(v−1)(v4+v3+v2+v+1)
v5−1
Récrire 1 comme 15=v5−15
Appliquer la règle de factorisation : xn−yn=(x−y)(xn−1+xn−2y+⋯+xyn−2yn−1)v5−15=(v−1)(v4+v3+v2+v+1)=(v−1)(v4+v3+v2+v+1)
=(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
=v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)=0
En utilisant le principe du facteur zéro : Si ab=0alors a=0ou b=0v=0orv+1=0orv4−v3+v2−v+1=0orv−1=0orv4+v3+v2+v+1=0
Résoudre v+1=0:v=−1
v+1=0
Déplacer 1vers la droite
v+1=0
Soustraire 1 des deux côtésv+1−1=0−1
Simplifierv=−1
v=−1
Résoudre v4−v3+v2−v+1=0:Aucune solution pour v∈R
v4−v3+v2−v+1=0
Trouver une solution pour v4−v3+v2−v+1=0 par la méthode de Newton-Raphson:Aucune solution pour v∈R
v4−v3+v2−v+1=0
Définition de l'approximation de Newton-Raphson
f(v)=v4−v3+v2−v+1
Trouver f′(v):4v3−3v2+2v−1
dvd​(v4−v3+v2−v+1)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dvd​(v4)−dvd​(v3)+dvd​(v2)−dvdv​+dvd​(1)
dvd​(v4)=4v3
dvd​(v4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4v4−1
Simplifier=4v3
dvd​(v3)=3v2
dvd​(v3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=3v3−1
Simplifier=3v2
dvd​(v2)=2v
dvd​(v2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=2v2−1
Simplifier=2v
dvdv​=1
dvdv​
Appliquer la dérivée commune: dvdv​=1=1
dvd​(1)=0
dvd​(1)
Dérivée d'une constante: dxd​(a)=0=0
=4v3−3v2+2v−1+0
Simplifier=4v3−3v2+2v−1
Soit v0​=1Calculer vn+1​ jusqu'à Δvn+1​<0.000001
v1​=0.5:Δv1​=0.5
f(v0​)=14−13+12−1+1=1f′(v0​)=4⋅13−3⋅12+2⋅1−1=2v1​=0.5
Δv1​=∣0.5−1∣=0.5Δv1​=0.5
v2​=3.25:Δv2​=2.75
f(v1​)=0.54−0.53+0.52−0.5+1=0.6875f′(v1​)=4⋅0.53−3⋅0.52+2⋅0.5−1=−0.25v2​=3.25
Δv2​=∣3.25−0.5∣=2.75Δv2​=2.75
v3​=2.48013…:Δv3​=0.76986…
f(v2​)=3.254−3.253+3.252−3.25+1=85.55078…f′(v2​)=4⋅3.253−3⋅3.252+2⋅3.25−1=111.125v3​=2.48013…
Δv3​=∣2.48013…−3.25∣=0.76986…Δv3​=0.76986…
v4​=1.89445…:Δv4​=0.58568…
f(v3​)=2.48013…4−2.48013…3+2.48013…2−2.48013…+1=27.25130…f′(v3​)=4⋅2.48013…3−3⋅2.48013…2+2⋅2.48013…−1=46.52924…v4​=1.89445…
Δv4​=∣1.89445…−2.48013…∣=0.58568…Δv4​=0.58568…
v5​=1.43781…:Δv5​=0.45664…
f(v4​)=1.89445…4−1.89445…3+1.89445…2−1.89445…+1=8.77607…f′(v4​)=4⋅1.89445…3−3⋅1.89445…2+2⋅1.89445…−1=19.21862…v5​=1.43781…
Δv5​=∣1.43781…−1.89445…∣=0.45664…Δv5​=0.45664…
v6​=1.05030…:Δv6​=0.38750…
f(v5​)=1.43781…4−1.43781…3+1.43781…2−1.43781…+1=2.93085…f′(v5​)=4⋅1.43781…3−3⋅1.43781…2+2⋅1.43781…−1=7.56332…v6​=1.05030…
Δv6​=∣1.05030…−1.43781…∣=0.38750…Δv6​=0.38750…
v7​=0.59224…:Δv7​=0.45805…
f(v6​)=1.05030…4−1.05030…3+1.05030…2−1.05030…+1=1.11112…f′(v6​)=4⋅1.05030…3−3⋅1.05030…2+2⋅1.05030…−1=2.42572…v7​=0.59224…
Δv7​=∣0.59224…−1.05030…∣=0.45805…Δv7​=0.45805…
v8​=18.88435…:Δv8​=18.29210…
f(v7​)=0.59224…4−0.59224…3+0.59224…2−0.59224…+1=0.67380…f′(v7​)=4⋅0.59224…3−3⋅0.59224…2+2⋅0.59224…−1=−0.03683…v8​=18.88435…
Δv8​=∣18.88435…−0.59224…∣=18.29210…Δv8​=18.29210…
v9​=14.22188…:Δv9​=4.66247…
f(v8​)=18.88435…4−18.88435…3+18.88435…2−18.88435…+1=120781.11894…f′(v8​)=4⋅18.88435…3−3⋅18.88435…2+2⋅18.88435…−1=25904.96293…v9​=14.22188…
Δv9​=∣14.22188…−18.88435…∣=4.66247…Δv9​=4.66247…
v10​=10.72385…:Δv10​=3.49802…
f(v9​)=14.22188…4−14.22188…3+14.22188…2−14.22188…+1=38222.36483…f′(v9​)=4⋅14.22188…3−3⋅14.22188…2+2⋅14.22188…−1=10926.83534…v10​=10.72385…
Δv10​=∣10.72385…−14.22188…∣=3.49802…Δv10​=3.49802…
v11​=8.09884…:Δv11​=2.62501…
f(v10​)=10.72385…4−10.72385…3+10.72385…2−10.72385…+1=12097.26043…f′(v10​)=4⋅10.72385…3−3⋅10.72385…2+2⋅10.72385…−1=4608.46147…v11​=8.09884…
Δv11​=∣8.09884…−10.72385…∣=2.62501…Δv11​=2.62501…
v12​=6.12820…:Δv12​=1.97063…
f(v11​)=8.09884…4−8.09884…3+8.09884…2−8.09884…+1=3829.49182…f′(v11​)=4⋅8.09884…3−3⋅8.09884…2+2⋅8.09884…−1=1943.27695…v12​=6.12820…
Δv12​=∣6.12820…−8.09884…∣=1.97063…Δv12​=1.97063…
v13​=4.64785…:Δv13​=1.48034…
f(v12​)=6.12820…4−6.12820…3+6.12820…2−6.12820…+1=1212.65418…f′(v12​)=4⋅6.12820…3−3⋅6.12820…2+2⋅6.12820…−1=819.16882…v13​=4.64785…
Δv13​=∣4.64785…−6.12820…∣=1.48034…Δv13​=1.48034…
v14​=3.53453…:Δv14​=1.11332…
f(v13​)=4.64785…4−4.64785…3+4.64785…2−4.64785…+1=384.22115…f′(v13​)=4⋅4.64785…3−3⋅4.64785…2+2⋅4.64785…−1=345.11129…v14​=3.53453…
Δv14​=∣3.53453…−4.64785…∣=1.11332…Δv14​=1.11332…
v15​=2.69527…:Δv15​=0.83926…
f(v14​)=3.53453…4−3.53453…3+3.53453…2−3.53453…+1=121.87505…f′(v14​)=4⋅3.53453…3−3⋅3.53453…2+2⋅3.53453…−1=145.21705…v15​=2.69527…
Δv15​=∣2.69527…−3.53453…∣=0.83926…Δv15​=0.83926…
v16​=2.05895…:Δv16​=0.63632…
f(v15​)=2.69527…4−2.69527…3+2.69527…2−2.69527…+1=38.76232…f′(v15​)=4⋅2.69527…3−3⋅2.69527…2+2⋅2.69527…−1=60.91625…v16​=2.05895…
Δv16​=∣2.05895…−2.69527…∣=0.63632…Δv16​=0.63632…
v17​=1.56818…:Δv17​=0.49077…
f(v16​)=2.05895…4−2.05895…3+2.05895…2−2.05895…+1=12.42335…f′(v16​)=4⋅2.05895…3−3⋅2.05895…2+2⋅2.05895…−1=25.31395…v17​=1.56818…
Δv17​=∣1.56818…−2.05895…∣=0.49077…Δv17​=0.49077…
v18​=1.16736…:Δv18​=0.40081…
f(v17​)=1.56818…4−1.56818…3+1.56818…2−1.56818…+1=4.08216…f′(v17​)=4⋅1.56818…3−3⋅1.56818…2+2⋅1.56818…−1=10.18459…v18​=1.16736…
Δv18​=∣1.16736…−1.56818…∣=0.40081…Δv18​=0.40081…
v19​=0.76245…:Δv19​=0.40490…
f(v18​)=1.16736…4−1.16736…3+1.16736…2−1.16736…+1=1.46161…f′(v18​)=4⋅1.16736…3−3⋅1.16736…2+2⋅1.16736…−1=3.60974…v19​=0.76245…
Δv19​=∣0.76245…−1.16736…∣=0.40490…Δv19​=0.40490…
Impossible de trouver une solution
La solution estAucunesolutionpourv∈R
Résoudre v−1=0:v=1
v−1=0
Déplacer 1vers la droite
v−1=0
Ajouter 1 aux deux côtésv−1+1=0+1
Simplifierv=1
v=1
Résoudre v4+v3+v2+v+1=0:Aucune solution pour v∈R
v4+v3+v2+v+1=0
Trouver une solution pour v4+v3+v2+v+1=0 par la méthode de Newton-Raphson:Aucune solution pour v∈R
v4+v3+v2+v+1=0
Définition de l'approximation de Newton-Raphson
f(v)=v4+v3+v2+v+1
Trouver f′(v):4v3+3v2+2v+1
dvd​(v4+v3+v2+v+1)
Appliquer la règle de l'addition/soustraction: (f±g)′=f′±g′=dvd​(v4)+dvd​(v3)+dvd​(v2)+dvdv​+dvd​(1)
dvd​(v4)=4v3
dvd​(v4)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=4v4−1
Simplifier=4v3
dvd​(v3)=3v2
dvd​(v3)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=3v3−1
Simplifier=3v2
dvd​(v2)=2v
dvd​(v2)
Appliquer la règle de la puissance: dxd​(xa)=a⋅xa−1=2v2−1
Simplifier=2v
dvdv​=1
dvdv​
Appliquer la dérivée commune: dvdv​=1=1
dvd​(1)=0
dvd​(1)
Dérivée d'une constante: dxd​(a)=0=0
=4v3+3v2+2v+1+0
Simplifier=4v3+3v2+2v+1
Soit v0​=−1Calculer vn+1​ jusqu'à Δvn+1​<0.000001
v1​=−0.5:Δv1​=0.5
f(v0​)=(−1)4+(−1)3+(−1)2+(−1)+1=1f′(v0​)=4(−1)3+3(−1)2+2(−1)+1=−2v1​=−0.5
Δv1​=∣−0.5−(−1)∣=0.5Δv1​=0.5
v2​=−3.25:Δv2​=2.75
f(v1​)=(−0.5)4+(−0.5)3+(−0.5)2+(−0.5)+1=0.6875f′(v1​)=4(−0.5)3+3(−0.5)2+2(−0.5)+1=0.25v2​=−3.25
Δv2​=∣−3.25−(−0.5)∣=2.75Δv2​=2.75
v3​=−2.48013…:Δv3​=0.76986…
f(v2​)=(−3.25)4+(−3.25)3+(−3.25)2+(−3.25)+1=85.55078…f′(v2​)=4(−3.25)3+3(−3.25)2+2(−3.25)+1=−111.125v3​=−2.48013…
Δv3​=∣−2.48013…−(−3.25)∣=0.76986…Δv3​=0.76986…
v4​=−1.89445…:Δv4​=0.58568…
f(v3​)=(−2.48013…)4+(−2.48013…)3+(−2.48013…)2+(−2.48013…)+1=27.25130…f′(v3​)=4(−2.48013…)3+3(−2.48013…)2+2(−2.48013…)+1=−46.52924…v4​=−1.89445…
Δv4​=∣−1.89445…−(−2.48013…)∣=0.58568…Δv4​=0.58568…
v5​=−1.43781…:Δv5​=0.45664…
f(v4​)=(−1.89445…)4+(−1.89445…)3+(−1.89445…)2+(−1.89445…)+1=8.77607…f′(v4​)=4(−1.89445…)3+3(−1.89445…)2+2(−1.89445…)+1=−19.21862…v5​=−1.43781…
Δv5​=∣−1.43781…−(−1.89445…)∣=0.45664…Δv5​=0.45664…
v6​=−1.05030…:Δv6​=0.38750…
f(v5​)=(−1.43781…)4+(−1.43781…)3+(−1.43781…)2+(−1.43781…)+1=2.93085…f′(v5​)=4(−1.43781…)3+3(−1.43781…)2+2(−1.43781…)+1=−7.56332…v6​=−1.05030…
Δv6​=∣−1.05030…−(−1.43781…)∣=0.38750…Δv6​=0.38750…
v7​=−0.59224…:Δv7​=0.45805…
f(v6​)=(−1.05030…)4+(−1.05030…)3+(−1.05030…)2+(−1.05030…)+1=1.11112…f′(v6​)=4(−1.05030…)3+3(−1.05030…)2+2(−1.05030…)+1=−2.42572…v7​=−0.59224…
Δv7​=∣−0.59224…−(−1.05030…)∣=0.45805…Δv7​=0.45805…
v8​=−18.88435…:Δv8​=18.29210…
f(v7​)=(−0.59224…)4+(−0.59224…)3+(−0.59224…)2+(−0.59224…)+1=0.67380…f′(v7​)=4(−0.59224…)3+3(−0.59224…)2+2(−0.59224…)+1=0.03683…v8​=−18.88435…
Δv8​=∣−18.88435…−(−0.59224…)∣=18.29210…Δv8​=18.29210…
v9​=−14.22188…:Δv9​=4.66247…
f(v8​)=(−18.88435…)4+(−18.88435…)3+(−18.88435…)2+(−18.88435…)+1=120781.11894…f′(v8​)=4(−18.88435…)3+3(−18.88435…)2+2(−18.88435…)+1=−25904.96293…v9​=−14.22188…
Δv9​=∣−14.22188…−(−18.88435…)∣=4.66247…Δv9​=4.66247…
v10​=−10.72385…:Δv10​=3.49802…
f(v9​)=(−14.22188…)4+(−14.22188…)3+(−14.22188…)2+(−14.22188…)+1=38222.36483…f′(v9​)=4(−14.22188…)3+3(−14.22188…)2+2(−14.22188…)+1=−10926.83534…v10​=−10.72385…
Δv10​=∣−10.72385…−(−14.22188…)∣=3.49802…Δv10​=3.49802…
v11​=−8.09884…:Δv11​=2.62501…
f(v10​)=(−10.72385…)4+(−10.72385…)3+(−10.72385…)2+(−10.72385…)+1=12097.26043…f′(v10​)=4(−10.72385…)3+3(−10.72385…)2+2(−10.72385…)+1=−4608.46147…v11​=−8.09884…
Δv11​=∣−8.09884…−(−10.72385…)∣=2.62501…Δv11​=2.62501…
v12​=−6.12820…:Δv12​=1.97063…
f(v11​)=(−8.09884…)4+(−8.09884…)3+(−8.09884…)2+(−8.09884…)+1=3829.49182…f′(v11​)=4(−8.09884…)3+3(−8.09884…)2+2(−8.09884…)+1=−1943.27695…v12​=−6.12820…
Δv12​=∣−6.12820…−(−8.09884…)∣=1.97063…Δv12​=1.97063…
v13​=−4.64785…:Δv13​=1.48034…
f(v12​)=(−6.12820…)4+(−6.12820…)3+(−6.12820…)2+(−6.12820…)+1=1212.65418…f′(v12​)=4(−6.12820…)3+3(−6.12820…)2+2(−6.12820…)+1=−819.16882…v13​=−4.64785…
Δv13​=∣−4.64785…−(−6.12820…)∣=1.48034…Δv13​=1.48034…
v14​=−3.53453…:Δv14​=1.11332…
f(v13​)=(−4.64785…)4+(−4.64785…)3+(−4.64785…)2+(−4.64785…)+1=384.22115…f′(v13​)=4(−4.64785…)3+3(−4.64785…)2+2(−4.64785…)+1=−345.11129…v14​=−3.53453…
Δv14​=∣−3.53453…−(−4.64785…)∣=1.11332…Δv14​=1.11332…
v15​=−2.69527…:Δv15​=0.83926…
f(v14​)=(−3.53453…)4+(−3.53453…)3+(−3.53453…)2+(−3.53453…)+1=121.87505…f′(v14​)=4(−3.53453…)3+3(−3.53453…)2+2(−3.53453…)+1=−145.21705…v15​=−2.69527…
Δv15​=∣−2.69527…−(−3.53453…)∣=0.83926…Δv15​=0.83926…
v16​=−2.05895…:Δv16​=0.63632…
f(v15​)=(−2.69527…)4+(−2.69527…)3+(−2.69527…)2+(−2.69527…)+1=38.76232…f′(v15​)=4(−2.69527…)3+3(−2.69527…)2+2(−2.69527…)+1=−60.91625…v16​=−2.05895…
Δv16​=∣−2.05895…−(−2.69527…)∣=0.63632…Δv16​=0.63632…
v17​=−1.56818…:Δv17​=0.49077…
f(v16​)=(−2.05895…)4+(−2.05895…)3+(−2.05895…)2+(−2.05895…)+1=12.42335…f′(v16​)=4(−2.05895…)3+3(−2.05895…)2+2(−2.05895…)+1=−25.31395…v17​=−1.56818…
Δv17​=∣−1.56818…−(−2.05895…)∣=0.49077…Δv17​=0.49077…
v18​=−1.16736…:Δv18​=0.40081…
f(v17​)=(−1.56818…)4+(−1.56818…)3+(−1.56818…)2+(−1.56818…)+1=4.08216…f′(v17​)=4(−1.56818…)3+3(−1.56818…)2+2(−1.56818…)+1=−10.18459…v18​=−1.16736…
Δv18​=∣−1.16736…−(−1.56818…)∣=0.40081…Δv18​=0.40081…
v19​=−0.76245…:Δv19​=0.40490…
f(v18​)=(−1.16736…)4+(−1.16736…)3+(−1.16736…)2+(−1.16736…)+1=1.46161…f′(v18​)=4(−1.16736…)3+3(−1.16736…)2+2(−1.16736…)+1=−3.60974…v19​=−0.76245…
Δv19​=∣−0.76245…−(−1.16736…)∣=0.40490…Δv19​=0.40490…
Impossible de trouver une solution
La solution estAucunesolutionpourv∈R
Les solutions sontv=0,v=−1,v=1
v=0,v=−1,v=1
Resubstituer v=u2,résoudre pour u
Résoudre u2=0:u=0
u2=0
Appliquer la règle xn=0⇒x=0
u=0
Résoudre u2=−1:Aucune solution pour u∈R
u2=−1
x2 ne peut pas être négative pour x∈RAucunesolutionpouru∈R
Résoudre u2=1:u=1,u=−1
u2=1
Pour x2=f(a) les solutions sont x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Appliquer la règle 1​=1=1
−1​=−1
−1​
Appliquer la règle 1​=1=−1
u=1,u=−1
Les solutions sont
u=0,u=1,u=−1
Remplacer u=sin(x)sin(x)=0,sin(x)=1,sin(x)=−1
sin(x)=0,sin(x)=1,sin(x)=−1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
Solutions générales pour sin(x)=0
Tableau de périodicité sin(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Résoudre x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
Solutions générales pour sin(x)=1
Tableau de périodicité sin(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−1:x=23π​+2πn
sin(x)=−1
Solutions générales pour sin(x)=−1
Tableau de périodicité sin(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
Combiner toutes les solutionsx=2πn,x=π+2πn,x=2π​+2πn,x=23π​+2πn

Graphe

Sorry, your browser does not support this application
Afficher un graph interactif

Exemples populaires

sin^2(2x)+cos^2(x)-1=0cos(8t)-5sin(8t)=0cos^2(x)+3sin(x)+1=0(a^{0.2})/((cos^2(x))-cos^2(x)-1)=0((2cos(x))/(2-1))((sin(x))/(2+2))=0
Outils d'étudeSolveur mathématique IADes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension ChromeSymbolab Math Solver API
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeTermesPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024